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1 Evaluating the Performance of IPW versus Marginal Standard-

ization

We are going to wrap up our short course by pulling several of the pieces

together that we’ve covered over the last few days. We’ll use the ADEMP frame-

work to develop a simulation study we’ll conduct here.

We’ll start with the aims of our simulation study: to compare the perfor-

mance of inverse probability weighting versus marginally standardized esti-

mates of the average treatment effect. However, it would help us to get more

specific with our intentions. For instance, we might ask whether we should

choose IP-weighting versus marginal standardization with a different number

of confounding variables (e.g., 10 versus 25. We might as whether we should

choose the bootstrap versus the robust variance estimator when we use IP

weighting. Getting more specific with our aims will help us make decisions

about how we should construct our data generating mechanisms, analyses,

and performance measures.

2 Aims

To start, let’s specify some aims of our simulation study. These will help guide

how we write the code we need to execute the tasks to fulfill our aims:

• Compare the performance of IP weighting versus marginal standardization

when the number of confounding variables is 10 versus 25

• Evaluate the performance of the robust variance estimator versus the boot-

strap for the IP weighted estimator

We’ll begin with these aims, but as we write our functions, it will be useful

to keep in mind other variables that we may be interested in exploring. For

example: we may want to look at what happens when the correlation between

confounding variables changes; we may want to look at the impact of sample

size; etc. We can easily incorporate these as arguments into our simulation

function, even though we may decide to not explore them for the sake of, e.g.,

run time.
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3 Data Generating Mechanisms

In terms of generating our data, we will rely on a simple triangle DAG, with a set

of confounding variables, a single exposure, and a single outcome:

A

C

Y

1

Figure 1: Simple confounding triangle, with
exposure A, confounder C , and outcome Y .

This gives us a relatively straightforward causal ordering, as follows:

• The variable C is most exogenous to this system

• The variable A is second most exogenous

• The variable Y is the most endogenous

Importantly, even though we may have a large number of variables C , be-

cause they are all exogenous and independent, we can treat them as a single

node on the DAG, and simulate them simultaneously (and independently) in the

code we write.

4 Estimands

We will focus our attention on the marginally adjusted odds ratio among the

exposed versus unexposed:

odds(Y = 1 | X = 1)

odds(Y = 1 | X = 0)

where odds(•) = P (•)/[1 − P (•)]. Note that, for a binary outcome, we

could have also expressed interest in the marginally adjusted risk ratio, or the

marginally adjusted risk difference, or some combination of all three. Since the

code we will write for this section is already complex enough, we will forego

targeting these estimands, but will note when and what changes can be made

as we proceed with this example.
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5 Methods

5.1 Inverse Probability Weighting

We’re interested in comparing IP weighting to marginal standardization. To

implement IP weighting, we need to first construct stabilized inverse probability

weights, defined as:

sw =


P (X = 1)

P (X = 1 | C)
if X = 1

P (X = 0)

P (X = 0 | C)
if X = 0

In this above equation, the P (X = 1) used in the numerator of the top

equation can be obtained by simply taking the mean of X when X ∈ [0, 1].

Similarly, the P (X = 0) can be obtained by taking one minus the mean of X.

The denominator of this equation can be obtained using, e.g., predictions

from a logistic regression model that regresses the exposure against all con-

founders. We can fit a model like this in R using code that looks something

like:

p_model <- glm(x ~ c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 +

c10, data = the_data, family = binomial(link = "logit"))

From the above model fit, we can extract the fitted values with:

p_model$fitted.values

These fitted values will correspond to P (X = 1 | C), which we can use

directly in our equation to obtain the stabilized weights. To obtain an estimate

of P (X = 0 | C), we can simply take 1− P (X = 1 | C), or:

1 - p_model$fitted.values

One problem with the above code is that, for a large number of C variables,

we will have to write out each in the regression model which can complicate

the evaluation of our methods when we change the number of confounding

variables. To deal with this problem, we can use a coding trick in R that looks

like this:
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p_model <- glm(x ~ ., data = the_data, family = binomial(link = "logit"))

What the code in the above model does is it regresses the x variable against

everything else in the dataset named the_data. This shorthand notation

makes it easy to flexibly change what goes into a regression model. However,

we must ensure that all the other variables in the dataset named the_data are

those that we want in our model. If this is not the case, we will end up fitting a

model that we do not want.

Inverse probability weighting can perform very poorly when the numerical

value of the propensity score is very high or very low. For example, for an

exposed individual, if we have an overall P (X = 1) = 0.5 (the numerator in

our weight equation), and a propensity score of 0.00001, this would return a

weight of:

0.5/0.00001 = 50000

This means that the individual with a propensity score of 0.00001 will con-

tribute a total of 50,000 pseudo-individuals in our weighted analysis. If our

original sample size was only 1,000, this would suggest an important problem:

in the weighted analysis, a single individual is contributing 50,000 observa-

tions, which is 50 times the size of the actual data we have.

To address problems like this, we can trim the weights we create using

the equation above. Specifically, we can construct a trimmed stabilized IP

weight, where any values of the stabilized weights greater than (e.g.) the

97.5th percentile are reset to the 97.5th percentile value. For example, using

an ifelse statement in R, we can construct trimmed weights as:

sw_trim <- ifelse(sw > quantile(sw, 0.975), quantile(sw, 0.975),

analysis_data$sw)

5.2 Marginal Standardization

To implement marginal standardization with a large number of confounding

variables, we can use the same coding trick above to fit an outcome regression

model as follows:
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mu_model <- glm(y ~ ., data = the_data, family = binomial(link = "logit"))

For this modeling approach to work, we must ensure that the dataset used

to fit this model (the_data) has only the outcome, the exposure, and the p

confounders we’d like to include in our model. All other variables, including

ID variables, the estimated propensity score, the stabilized weights we might

construct, and anything else, is excluded from the dataset used to fit this

model.

Once estimated, we can then generate predictions from this mu_model

using the predict function, and averaging the predictions we obtained so that

we can get our estimand:

muhat1 <- mean(predict(mu_model, newdata = transform(the_data,

x = 1), type = "response"))

Note the use of the transform function here, which will set the exposure

for each individual in our dataset to 1. Additionally, we’ve included as an ar-

gument to this predict function type="response". When fitting a logistic

regression model such as the one above, we can generate predictions on differ-

ent scales. For instance, we could use mu_model to predict the log-odds of the

outcome we’d observe if everyone was exposed. If we wanted predictions on

the log-odds scale, we could use type = "link" as an argument to the pre-

dict function. However, using type="response" provides us with predictions

on the probability scale.

6 Performance Measures

Once we obtain our simulation data, we will use the following performance

measures to compare IP weighting to marginal standardization:

• bias of the point estimate

• bias of the standard error

• confidence interval coverage

• confidence interval length
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7 Monte Carlo Integration for the True Marginal OR

In order to obtain estimates of our desired performance measures, we will need

to compute the true marginal odds ratios for all the scenarios we will explore.

In our case, we will limit our simulation to scenarios where the sample size

for each Monte Carlo simulation is 500 and 1000, and where the number of

confounders in each Monte Carlo simulation is 10 and 25.

This means that we’ll have to use Monte Carlo integration to estimate

the true marginal odds ratios under two settings: when there are 10 and 25

confounders in the data generating mechanism.1 We can do this using the 1 Note that we don’t need to account for
changing sample sizes in the Monte Carlo
integration approach, since we are interested
in maximizing the sample size for this step.

following code:

expit<-function(a){1/(1+exp(-a))}

set.seed(123)

simulation_function_true <- function(intercept = -2,

exposure = 1,

c_number = 10,

cov_mat = 0,

diag_cov = 1){

n = 5e6

# how many confounders?

p <- c_number

## confounder matrix

sigma <- matrix(cov_mat, nrow=p, ncol=p)

diag(sigma) <- diag_cov

c <- mvtnorm::rmvnorm(n, mean=rep(0,p), sigma=sigma)

# DESIGN MATRIX FOR THE PROPENSITY SCORE MODEL

piMat <- model.matrix(

as.formula(

paste("~(",

paste("c[,",1:ncol(c),"]", collapse="+"),
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")"

)

)

)[,-1]

# parameters for confounder exposure relation

parmsC_pi <- rep(log(1.5), c_number)

# simulate the exposure

x <- exposure #rbinom(n, size = 1, expit(-.5 + piMat%*%parmsC_pi))

# parameters for the confounder outcome relation

parmsC_mu <- rep(log(2), c_number)

# simulate the outcome

pY <- mean(expit(intercept + log(2)*x + piMat%*%parmsC_mu))

print(paste("the mean of y is: ", pY))

## what would we change here if interested in marginally adjusted risk difference or risk ratio?

res <- pY/(1 - pY)

return(res)

}

odds1 <- simulation_function_true(intercept = -2, exposure = 1, c_number = 10)

odds0 <- simulation_function_true(intercept = -2, exposure = 0, c_number = 10)

or_marg1 <- log(odds1/odds0)

or_marg1

odds1 <- simulation_function_true(intercept = -2, exposure = 1, c_number = 25)

odds0 <- simulation_function_true(intercept = -2, exposure = 0, c_number = 25)
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or_marg2 <- log(odds1/odds0)

or_marg2

true_log_or1 <- or_marg1

true_log_or2 <- or_marg2

# the true log OR marg1 (c_number = 10) is: 0.4132932

#

# the true log OR marg2 (c_number = 25) is: 0.289803

8 Running the Simulation

Now that we have our true values, we can go ahead and proceed with running

the simulation.

library(parallel)

library(lmtest)

library(sandwich)

expit<-function(a){1/(1+exp(-a))}

set.seed(123)

simulation_function <- function(index,

intercept=-2,

sample_size = 1000,

c_number = 10,

cov_mat = 0,

diag_cov = 1){

# printing to console won't work with parallel processing

print(index)
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# DATA GENERATION

n <- sample_size

print(n)

# how many confounders to simulate?

p <- c_number

print(p)

## confounder matrix

sigma <- matrix(cov_mat, nrow=p, ncol=p)

diag(sigma) <- diag_cov

c <- mvtnorm::rmvnorm(n, mean=rep(0,p), sigma=sigma)

# DESIGN MATRIX FOR THE PROPENSITY SCORE MODEL

piMat <- model.matrix(

as.formula(

paste("~(",

paste("c[,",1:ncol(c),"]", collapse="+"),

")"

)

)

)[,-1]

# parameters for confounder exposure relation

parmsC_pi <- rep(log(1.5), c_number)

# simulate the exposure

x <- rbinom(n, size = 1, expit(-.5 + piMat%*%parmsC_pi))

# parameters for the confounder outcome relation

parmsC_mu <- rep(log(2), c_number)

# simulate the outcome

y <- rbinom(n, size = 1, expit(intercept + log(2)*x + piMat%*%parmsC_mu))
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# construct dataset

analysis_data <- data.frame(y, x, c)

# ANALYSIS

# marginal standardization

meanY <- mean(analysis_data$y)

m1 <- glm(y ~ ., data = analysis_data, family=binomial(link="logit"))

muhat1 <- mean(predict(m1, newdata = transform(analysis_data, x = 1), type="response"))

muhat0 <- mean(predict(m1, newdata = transform(analysis_data, x = 0), type="response"))

## compute the odds from these average probabilities

odds1<-muhat1/(1-muhat1)

odds0<-muhat0/(1-muhat0)

## marginal log-odds ratio

marginal_standardization_estimate <- log(odds1/odds0)

# IP WEIGHTING

# create the propensity score in the dataset

analysis_data$propensity_score <- glm(x ~ .,

data = analysis_data[,-y],

family = binomial("logit"))$fitted.values

# stabilized inverse probability weights

analysis_data$sw <- (mean(analysis_data$x)/analysis_data$propensity_score)*analysis_data$x +

((1-mean(analysis_data$x))/(1-analysis_data$propensity_score))*(1-analysis_data$x)

summary(analysis_data$sw)

quantile(analysis_data$sw, .995)

# trim the weights
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analysis_data$sw <- ifelse(analysis_data$sw>quantile(analysis_data$sw, .995),

quantile(analysis_data$sw, .995),

analysis_data$sw)

# outcome model

m2 <- glm(y ~ x, data = analysis_data, weights = sw, family = quasibinomial(link="logit"))

ip_weighting_estimate <- coeftest(m2,

vcov. = vcovHC(m2, type = "HC3"))[2,1:2]

# bootstrap SEs

boot_func <- function(nboot, data){

a_dat <- data

index <- sample(1:nrow(a_dat), nrow(a_dat), replace = T)

boot_dat <- a_dat[index, ]

# MARGINAL STANDARDIZATION

m1_ <- glm(y ~ ., data = boot_dat, family=binomial(link="logit"))

muhat1_ <- mean(predict(m1_, newdata = transform(boot_dat, x=1), type="response"))

muhat0_ <- mean(predict(m1_, newdata = transform(boot_dat, x=0), type="response"))

## compute the odds from these average probabilities

odds1_ <- muhat1_/(1-muhat1_)

odds0_ <- muhat0_/(1-muhat0_)

marginal_stand_ <- log(odds1_/odds0_)

# IP WEIGHTING

# create the propensity score in the dataset

boot_dat$propensity_score <- glm(x ~ .,



SIMULATION STUDY: EXAMPLE 1 13

data = boot_dat[,-y],

family = binomial("logit"))$fitted.values

# stabilized inverse probability weights

boot_dat$sw <- (mean(boot_dat$x)/boot_dat$propensity_score)*boot_dat$x +

((1-mean(boot_dat$x))/(1-boot_dat$propensity_score))*(1-boot_dat$x)

# trim the weights

boot_dat$sw <- ifelse(boot_dat$sw>quantile(boot_dat$sw, .995),

quantile(boot_dat$sw, .995),

boot_dat$sw)

# outcome model

m2_ <- glm(y ~ x,

data = boot_dat,

weights = sw,

family = quasibinomial(link="logit"))

ip_weighting_ <- summary(m2_)$coefficients[2,1]

return(c(marginal_stand_, ip_weighting_))

}

analysis_data <- analysis_data %>% select(-propensity_score, -sw)

boot_res <- lapply(1:500, function(x) boot_func(x, data = analysis_data))

boot_SE <- apply(do.call(rbind, boot_res), 2, sd)

# SIMULATION FUNCTION OUTPUT

res <- data.frame(intercept = intercept,

sample_size = sample_size,

c_number = c_number,
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cov_mat = cov_mat,

diag_cov = diag_cov,

marginal_standardization_estimate,

marginal_standardization_SE = boot_SE[1],

ip_weighting_estimate = ip_weighting_estimate[1],

ip_weighting_robust_SE = ip_weighting_estimate[2],

ip_weighting_boot_SE = boot_SE[2])

return(res)

}

# simulation function parameters

parm_data <- expand.grid(

index = 1:200,

sample_size = 1000,

intercept = -2,

c_number = c(10, 25),

cov_mat = 0,

diag_cov = 1

)

head(parm_data, 3)

tail(parm_data, 3)

simulation_results <- mclapply(1:nrow(parm_data),

function(x) simulation_function(index = parm_data[x,]$index,

intercept = parm_data[x,]$intercept,

sample_size = parm_data[x,]$sample_size,

c_number = parm_data[x,]$c_number,

cov_mat = parm_data[x,]$cov_mat,

diag_cov = parm_data[x,]$diag_cov),

mc.cores = detectCores() - 2)
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sim_res <- do.call(rbind, simulation_results)

# # save the data to file!

head(sim_res)

write_csv(sim_res, here("lectures/06_Section6_SimulationInPractice", "simulation_results_MSIPW.csv"))

9 Performance Evaluation

This simulation takes some time to run, so let’s be sure we save our results to

a file so that we can re-import them without having to run the simulation again

to rebuild the entire dataset. We can import our saved data back into R using

standard code, such as the read functions in the tidyverse:

a <- read_csv(here("lectures/06_Section6_SimulationInPractice", "simulation_results_MSIPW.csv"))

head(a)

## # A tibble: 6 x 10

## intercept sample_size c_number cov_mat diag_cov marginal_standardization_est~1

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 -2 1000 10 0 1 0.718

## 2 -2 1000 10 0 1 0.445

## 3 -2 1000 10 0 1 0.376

## 4 -2 1000 10 0 1 0.610

## 5 -2 1000 10 0 1 0.279

## 6 -2 1000 10 0 1 0.499

## # i abbreviated name: 1: marginal_standardization_estimate

## # i 4 more variables: marginal_standardization_SE <dbl>,

## # ip_weighting_estimate <dbl>, ip_weighting_robust_SE <dbl>,

## # ip_weighting_boot_SE <dbl>
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# to make things easier, let's create objects with our true values:

true_log_or1 <- 0.4132932

true_log_or2 <- 0.289803

Let’s start with the mean of the point estimates obtained from marginal

standardization and IP weighting:

# the true log OR marg1 (c_number = 10) is: 0.4132932

#

# the true log OR marg2 (c_number = 25) is: 0.289803

a %>%

group_by(c_number) %>%

summarize(meanMS = mean(marginal_standardization_estimate),

meanIPW = mean(ip_weighting_estimate))

## # A tibble: 2 x 3

## c_number meanMS meanIPW

## <dbl> <dbl> <dbl>

## 1 10 0.393 0.466

## 2 25 0.295 0.512

These results suggest some potential problems with the IP weighting ap-

proach. Let’s compute the bias:

# the true log OR marg1 (c_number = 10) is: 0.4132932

#

# the true log OR marg2 (c_number = 25) is: 0.289803

a %>%

group_by(c_number) %>%

summarize(biasMS = mean(marginal_standardization_estimate - true_log_or1),

biasIPW = mean(ip_weighting_estimate - true_log_or2))

## # A tibble: 2 x 3



SIMULATION STUDY: EXAMPLE 1 17

## c_number biasMS biasIPW

## <dbl> <dbl> <dbl>

## 1 10 -0.0199 0.176

## 2 25 -0.118 0.222

These bias estimates seem fairly large, particularly for IP weighting. We

can ask if these estimates are compatible with an underlying hypothesis of “no

bias”, after all, we only did 200 simulations, which is a fairly low number. Let’s

compute standard errors for each of these bias estimates. Also, it might help

us to construct a dataset with all these results:

mc_se_bias <- function(x, n){

sqrt(sum((x - mean(x))^2)/(n*(n-1)))

}

bias_results <- a %>%

group_by(c_number) %>%

summarize(biasMS = mean(marginal_standardization_estimate - true_log_or1),

biasIPW = mean(ip_weighting_estimate - true_log_or2),

biasMS_se = mc_se_bias(marginal_standardization_estimate - true_log_or1, n = 200),

biasIPW_se = mean(ip_weighting_estimate - true_log_or2, n = 200),

biasMS_p.value = round(2*(1 - pnorm(abs(biasMS/biasMS_se))),4),

biasIPW_p.value = round(2*(1 - pnorm(abs(biasIPW/biasIPW_se))),4))

bias_results

## # A tibble: 2 x 7

## c_number biasMS biasIPW biasMS_se biasIPW_se biasMS_p.value biasIPW_p.value

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 10 -0.0199 0.176 0.00853 0.176 0.0196 0.317

## 2 25 -0.118 0.222 0.00754 0.222 0 0.317
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ggplot(a) +

geom_histogram(aes(marginal_standardization_estimate - true_log_or1)) +

geom_vline(xintercept = 0, color = "red") +

facet_wrap(~c_number)
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ggplot(a) +

geom_histogram(aes(ip_weighting_estimate - true_log_or2)) +

geom_vline(xintercept = 0, color = "red") +

facet_wrap(~c_number)
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