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1 Why Simulate?

The last two decades have seen tremendous growth in the quantitative sci-

ences.1 Statistical and analytic methods have become more nuanced, more 1 Much of this section is based on Rudolph
et al. (2021)

complex, and more theoretical. The volume and complexity of these newer

topics can make it difficult to gain a deeper understanding of basic concepts.

Even in cases where deep dives are possible, deep understanding of a com-

plex concept is usually facilitated by breaking it down into simpler components

and understanding the role that each component plays in the whole (Gleick,

2011). Tools that can be used to do this would therefore be of great benefit.

Simulation is one such tool (Burton et al., 2006; Mooney, 1995; Hodgson and

Burke, 2000).

Simulation is most commonly applied when assessing or comparing the

performance of methods (e.g., estimators) in terms of bias or precision under

known conditions. However, simulation can also be used to demonstrate many

fundamental principles of data analysis, including study design, bias, and error,

in a clear and systematic way. Additionally, simulation can be used to develop

a deeper understanding of the scientific method, since theories, methods, or

hypotheses can be subjected to experiments in a well-controlled, simulated

environment.

Overall, developing an ability to use simulation methods can be invaluable

in pursuing a deeper understanding of important scientific and quantitative

concepts.

2 An Overview of Simulation Designs

Morris et al. (2019) define a Monte Carlo simulation study as “computer ex-

periments that involve creating data by pseudo-random sampling from known

probability distributions.” This is a good definition, but it captures at least four

roughly distinct activities encountered in the quantitative sciences: compart-

mental modeling, generative modeling, Monte Carlo estimation, and Monte

Carlo simulation.
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2.1 Compartmental Models

Compartmental models are common in infectious disease modeling (Vynnycky

and White, 2010) and the social sciences (Epstein, 2006). These models divide

a population of individuals into sub-groups, or compartments, and creates

relationships between them that are then tracked across time.

This models are quite common in infectious disease epidemiology, and

include sub-variants such as the Susceptible, Infectious, and Recovered (SIR)

model, or the Susceptible, Exposed, Infectious, and Recovered (SEIR) model.

These are often used to understand how infections might spread in a pop-

ulation, where compartments are constructed to represent subsets of the

population.

2.2 Generative Modeling

While the term “generative model” has been around for some time (Epstein,

2006), it is more recently being used to denote a specific type of synthetic

data generation. Though there are multiple potential uses of “synthetic data”

(Figueira and Vaz, 2022), in the context of simulation, synthetic data generation

methods are being developed to solve one very specific but very important

problem: the need to rely on parametric models to simulate data.

As we will see in this course, Monte Carlo simulations are conducted pri-

marily by specifying a data generating mechanism with very specific forms. For

example, the variables that we simulate might be normally distributed with con-

stant variance. The relationships between them will often be linear, or deviate

from linearity in very well behaved ways (e.g., using squared or cubic terms to

define polynomial relationships).

This reliance on well behaved parametric forms creates an inference prob-

lem: we might find that a particular method performs very well in data sim-

ulated with well-behaved parametric models. But can we expect this same

performance to hold in settings where we collect our own data that is not

guaranteed to follow some set of well-behaved parametric models?

Generative models are meant to solve this problem. They rely on, for ex-

ample, neural networks (Burkov, 2019, chapter 6), variational autoencoders

(Doersch, 2021), generative adversarial networks (Goodfellow et al., 2020),

or other algorithms that generally follow an “encoder-decoder” strategy. One
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part of algorithm encodes the relationship in an empirical dataset that we are

potentially using for a specific analysis, and simulates a dataset from this

encoding. Some approaches try to simulate this data with a known true rela-

tionship between (say) an exposure and outcome of interest (Athey et al., 2024,

Parikh et al. (2022)).

The second part of the algorithm tries to “decode” the relationship, to see

if it can tell whether the simulated data are “different” from the actual data. If

certain parts of the data are, in fact, different, the initial encoder algorithm can

re-simulate the data trying to improve the overall fidelity between the simulated

and real data.

After several iterations of this, the hope is that the final simulated dataset

should be indistinguishable from the real dataset. In doing so, these generative

algorithms can then be used to evaluate the performance of analytic methods

in datasets that look very much like real data, thus avoiding the problem that

the simulated data are too artificial to be of general use.

2.3 Monte Carlo Estimation

Monte Carlo estimation (sometimes referred to as Monte Carlo integration)

is a general procedure usually used in the context of an applied scientific

question, such as when external data are used to address a particular question

of interest. Monte Carlo estimation is usually deployed to solve for a parameter

that answers this question using pseudo-random number generators. The

most common use of Monte Carlo estimation in quantitative settings (to my

knowledge) is in the context of causal inference to solve for the parametric g

formula, first introduced by Robins (1986).

The g formula is a complex equation that (under some basic causal identi-

fiability assumptions) allows us to quantify outcomes that would be observed

under different exposure scenarios in a population of interest. The equation is

often defined as:

E(Y aM ) =

∫
· · ·

∫ ∫
E(Y | aM , zM )

M∏
m=0

f(zm | zm−1, am−1)dµ(zm)

This complex equation does not usually have a closed-form solution, and

thus Monte Carlo estimation is the standard procedure for solving this func-
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tion. Several explanations of this are available in the literature (Robins and

Hernán, 2009; Keil et al., 2014; Daniel et al., 2013; McGrath et al., 2020), as well

as a large number of applied examples implementing the procedure (Naimi

et al., 2021, Taubman et al. (2009); Westreich et al., 2012; Cole et al., 2013;

Edwards et al., 2014; Young et al., 2011).

For example, we (Naimi et al., 2021) had a question about whether daily,

low-dose aspirin can be used to prevent pregnancy loss in women trying to

get pregnant, but who are at a higher risk of pregnancy loss and having a hard

time getting and staying pregnant. We collected data on roughly 1200 women

trying to get pregnant at a number of medical centers across the United States.

These data were from the Effects of Aspirin for Gestation and Reproduction

(EAGeR) Trial. One of our goals was to quantify the following parameter:

E(Y aM=1 − Y aM=0),

which is the difference in outcomes that would be observed if all women took

aspirin consistently over the course of follow-up, versus if all women took

placebo consistently over the course of follow-up. This contrast is an answer

to our underlying research question, and we used the g formula with Monte

Carlo estimation to quantify this contrast of interest.

We will see a simpler example of Monte Carlo estimation below with an

example of estimating π.

2.4 Monte Carlo Simulation

Monte Carlo simulation is an extension/generalization of Monte Carlo estima-

tion. While Monte Carlo estimation is often used with data collected to answer

a substantive question of interest, Monte Carlo simulation is often used to

estimate a parameter that addresses a methodological question of interest.2 2 This distinction, however, is somewhat
artificial, as the separation between Monte
Carlo estimation versus simulation is not
always straightforward.

This short course will be primarily about Monte Carlo simulation, and we will

see many examples of this over the course of the next few days.

2.5 The Monte Carlo Method

What’s important is that all three of these approaches rely on the Monte Carlo

method to be deployed. The Monte Carlo method was introduced in the early

20th century (Metropolis and Ulam, 1949). It was developed by John von Neu-
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mann, Stanislav Ulam, and Nicholas Metropolis to solve problems around the

behavior of fissionable material under different conditions (Metropolis, 1987).

The basic idea behind this method is to use chance to solve problems that

would either be intractable, or just too difficult to solve analytically. Because of

it’s use of chance, it is named after the famed Monte Carlo Casino in Monaco

(Dunn and Shultis, 2022).

3 Example Simulation Questions

Monte Carlo estimation proceeds by using pseudo-random number generation

to quantify a parameter of interest. The number of questions that could be an-

swered using Monte Carlo simulation is endless. More generally, Monte Carlo

methods can be used to gain insights, experiment, and answer an enormously

wide range of questions related to quantitative methodology. Here are a few

examples:

3.1 Can we estimate the value of π?

For thousands of years, the ratio of a circle’s circumference to its diameter

has played an important role in the unfoldment of human history. Equally

fascinating is the history of how this constant π has been quantified over the

millenia (Beckmann, 1971). Interestingly, we can use the Monte Carlo method

to quantify π.3 For example, suppose you didn’t know, but had to estimate π. 3 Note that this is not nearly the most effi-
cient way of calculating π. To my knowledge,
the current “best” approach to quantifying π
is based on a hexadecimal algorithm in base
16. See Bailey et al. (1997).

Suppose further that you knew the area of a circle included π as a constant:

AC = π × r2

We can construct an equation to solve for π by taking the ratio of a quarter

of a unit circle to the area of the unit square:

AC/4

AS
=

(π × r2)/4

L×W
.

Because we’re dealing with the unit circle and square, we can replace r, L,

and W by 1, and we get:

AC/4

AS
= π/4

If you chose L = W = r = 1, you could take the ratio of the area of the
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quarter circle to the area of the unit square to give:

π = 4×
AC/4

AS

You could then randomly spread points over the entire unit square. Taking

four times the proportion of points that fall in the quarter circle relative to the

unit square will give you an estimate of π:

# estimating pi

pi_est <- function(simulation_n) {

x <- runif(simulation_n, 0, 1)

y <- runif(simulation_n, 0, 1)

# if point lies within radius, set to one, otherwise zero

rad <- as.numeric(x^2 + y^2 <= 1)

# proportion of points within quarter circle (circle area) to

# proportion of points within unit square (square area)

res <- c(simulation_n, (sum(rad)/simulation_n)*4)

return(res)

}

n_list <- c(500, 1000, 5000, 50000, 500000, 100000, 10000000)

pi_data <- NULL

for(i in n_list){

pi_data <- rbind(pi_data, pi_est(simulation_n = i))

}

We can present the results in a fancy-ish table using the kable function in

the knitr package. Here we see that, as we increase the sample size used to

estimate π, the estimated value gets closer and closer to the truth:
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knitr::kable(pi_data, "simple",

col.names = c("Simulation N",

"Estimated pi"))

Simulation N Estimated pi

5e+02 3.096000

1e+03 3.164000

5e+03 3.181600

5e+04 3.143760

5e+05 3.141904

1e+05 3.141160

1e+07 3.142735

3.2 Estimating the Central Tendency of a Random Variable

Here, we’ll use another example to illustrate the concept of simulation in a

slightly more familiar setting. Suppose we have a dataset that contains infor-

mation on the body mass index of 20 individuals sampled from the general

population. We assume this BMI variable is distributed normally.

Suppose further that we’d like to estimate the central tendency of this

distribution as accurately and efficiently as possible.

We know that we can use either the mean, the median, or the mode value

of this distribution as a measure of central tendency, and if BMI is normally

distributed, then they should all be the same. So should we use the mean, the

median, or the mode to summarize this distribution? Does it matter? Why or

why not? We can use simulation to gain some insight into this question:

# write a function that computes the statistical

# mode. modified from: https://stackoverflow.com/a/8189441

mode_func <- function(x) {

ux <- unique(y)

ix <- which.max(tabulate(match(y, ux)))

if(ix==1){

warning("no duplicates in data, mode does not exist")



WHY SIMULATE? 9

res <- sample(ux, size = 1)

} else{

res <- ux[ix]

}

return(res)

}

# set the seed value

set.seed(123)

# how many observations?

n = 200

# start the simulation loop

res <- NULL

for(i in 1:1e4){

# simulate a variable from a normal

# with mean 26.5 and SD 5.25

y <- round(rnorm(n, mean = 26.5, sd = 5.25))

# estimate mean, median, and mode

mode_estimator <- mode_func(y)

mean_estimator <- mean(y)

median_estimator <- median(y)

# store results

res <- rbind(res,

cbind(mode_estimator,

mean_estimator,

median_estimator)

)

}
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head(res)

## mode_estimator mean_estimator median_estimator

## [1,] 25 26.480 26

## [2,] 27 26.695 27

## [3,] 25 26.645 27

## [4,] 26 26.385 27

## [5,] 28 26.675 27

## [6,] 29 26.230 26

# convert results to data frame

res <- data.frame(res)

# plot results

ggplot(res) +

geom_histogram(aes(mode_estimator),

alpha = .2, fill = "blue") +

geom_histogram(aes(mean_estimator),

alpha = .2, fill = "red") +

geom_histogram(aes(median_estimator),

alpha = .2, fill = "green") +

scale_x_continuous(expand = c(0,0)) +

scale_y_continuous(expand = c(0,0))
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Is one better than the other? Why? Clearly, the figure shows us that the

mode as an estimator is not great. It has a much wider spread than the other

two. But what about the mean versus median?

res %>%

summarize_all(list(mean = mean,

std_dev = sd))

## mode_estimator_mean mean_estimator_mean median_estimator_mean

## 1 26.5094 26.49731 26.5023

## mode_estimator_std_dev mean_estimator_std_dev median_estimator_std_dev

## 1 3.33467 0.3718288 0.5456872

This simple table shows that the average of all the values from the mean,

median, and mode estimators are the same: roughly 26.5, which is what we set

the true mean to in the simulation code above.

However, the standard deviation of each estimator is very different across

the three. The estimator with the smallest standard deviation is the mean

estimator, which suggests the mean is the best option in our setting.

As we proceed through this course, we’ll see how these and other tools can

be used to answer questions about the performance of quantitative methods in

a wider range of settings.

4 Some Example Simulation Research Questions

The number of questions that can be addressed using simulation methods is

nearly endless. However, to gain a more precise understanding of the kinds of

questions asked and answered in actual research settings, let’s consider a few

published research papers that rely on simulation:

4.1 Inverse Probability Weighting versus G Comptuation in Time-Dependent

Settings

In 2023, Rudolph et al. (2023) compared different variations of inverse prob-

ability weighting and different variations of the g computation estimator for

estimating the average treatment effect in survival data with a time-dependent
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treatment. Generally, there are few methods available to estimate effects for

treatments that vary over time. The most commonly used techniques are IP

weighting and g computation. However, researchers are often unsure about

which approach to pick in a given setting. Rudolph et al. (2023) sought to

generate insights about how to navigate this question using simulation. They

found that methods performed similarly, except for a variation of g computa-

tion known as the iterative conditional expectation (ICE) g computation estima-

tor. This latter estimator had the lowest bias, but also the lowest precision, in

the settings explored.

4.2 The Impact of Random Measurement Error in Observational Data Anal-

ysis

Measurement error occurs when the tools used to collect data can yield incor-

rect information about the underlying feature being measured. Measurement

error can be non-random, or differential, where the degree of error can depend

on other variables; or it can be random, or non-differential, where the degree of

error does not depend on any other variables in the system under study.

Researchers in epidemiology and other quantitative sciences often state

that non-differential misclassification biases results towards the null effect.

Practically, this means that if non-differential measurement error is present,

and a study yields an effect that is non-null, then this effect represents a

conservative estimate of the exposure under study. This implies the effect

is stronger than estimated in the study. However, this is only true if non-

differential misclassification biases towards the null, and only towards the

null. If this type of error can bias away from the null, then all bets are off, and

we cannot conclude that the effect estimated is conservative.

In 2018, Brakenhoff et al. (2018) conducted a simulation study that mim-

icked research in cardiovascular epidemiology to evaluate whether, in these

more realistic settings, non-differential measurement error biases only towards

the null. They showed that the direction of effect of random measurement error

on the estimated exposure-outcome relations can be difficult to anticipate,

suggesting that caution is warranted when concluding that estimated effects

are conservative.
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4.3 Hetergeneous Treatment Effects in the Presence of Null Overall Effects

Interest in heterogeneous treatment effects, a term meant to connote the

fact that the effect of a treatment or exposure might differ widely across sub-

groups of a population, is increasing. There has been some theoretical work

suggesting that, in a given sample, if there is no overall effect of a treatment

under study, then the existence of strong sub-group effects is unlikely. This is

important, since researchers often estimate “significant” subgroup effects in

the absence of overall effects, suggesting that these estimates are the result of

noise and variability.

In 2013, Abrahamowicz et al. (2013) conducted a simulation study to see

how common it would be to encounter null overall effects even in the presence

of strong sub-group effects. They also explored what factors affected the

presence of such scenarios. They explored three study designs: small clinical

studies, case–control studies, and large cohort studies, each under different

total sample size (N), relative size of the affected subgroup, and true treatment

effect. Overall, their simulation provided evidence against previous theoretical

conceptualizations of the problem: if the treatment really only has an effect in

one subgroup of the population, a null overall effect can often coincide with a

non-null treatment-by-subgroup interaction.

5 Some Motivating Questions

This short course will be motivated by an actual simulation study. Throughout,

we will demonstrate the concepts and tools needed to conduct a simulation

study using some actual examples to motivate our study. We will focus on the

following research questions:

5.1 Example 1: Simple Regression in an RCT setting

Estimating intention-to-treat effects in randomized trials is usually a sim-

ple procedure comparing the summary measure (e.g., risk) of the outcome

between the treated and placebo groups. However, there is some evidence

suggesting that if we further adjust for variables that explain variability in the

outcome, we can increase the efficiency of the intention-to-treat effects estima-

tor. We’ll conduct a simulation to address the following research question:
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How much improvement in the performance of an ITT effect estimator do we

gain when we adjust for variables that explain the outcome?

5.2 Example 2: IPW vs Marginal Standardization

Similar to the study by Rudolph et al. (2023), we can ask whether there is a dif-

ference in the performance of an IP weighted estimator versus a g computation

(i.e., marginal standardization) estimator in settings where the exposure does

not vary over time. We can use simulation to address the following research

question:

How does inverse probability weighting compare to marginal standardization

when used to adjust for confounding in a treatment effect estimation setting?

5.3 Example 3: Causal Mediation Analysis

Mediation analysis is an extremely popular form of analyzing data to deter-

mine whether an estimated association between an exposure and outcome of

interest is due entirely, partially, or not at all to a third potentially mediating

variable. Several methods have been developed to estimate direct and indi-

rect effects due to mediation in observational data. Most require that certain

very strong assumptions hold. For example, one usually has to adjust for con-

founders of the relationship between the mediator and outcome of interest to

avoid bias. However, many methods also require that these confounders are

not affect by the exposure under study. We can use simulation to answer the

following research question:

If we don’t use methods that account for mediator-outcome confounders

affected by the exposure, how misleading can the results of a mediation analysis

be?

Over the next few days, we will explore concepts, tools, and strategies to

enable us to more clearly define what we mean by this question, and how we

can construct a simulation study to provide us with some answers to these

questions.
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