
Constructing User Defined Functions in R
Ashley I Naimi

Spring 2024

Contents

1 Constructing User Defined Functions in R 2

2 A Basic Simulation Function 3

3 For Loops in R 5

4 The Apply Family of Functions 7

4.1 lapply 8

4.2 sapply 9

4.3 mapply 10

4.4 A Generalization of sapply and lapply to Multiple Argument Loops 12

5 Understanding Seeds 14

6 Using Seeds in R 15

6.1 Setting Seeds Once and Only Once 16

CONSTRUCTING USER DEF INED FUNCTIONS IN R 2

1 Constructing User Defined Functions in R

Functions are the most useful operational units in the R programming lan-

guage. Every command run in R is a function. They are also essential when

running simulation studies. In this section, we will cover some basic concepts

behind writing functions in R, and then demonstrate how they can be tailored to

Monte Carlo simulations.

The basic of a function in R is as follows:

a_function <- function(<arguments>){

<internal code with arguments>

<return statement>

}

There are several functions that we can construct for our purposes in doing

a simulation study. For example, when using logistic regression, we’ll need two

functions that we’ve already seen: the logistic and inverse logistic functions.

Let’s explore these:

expit <- function(x) {

exp(x)/(1 + exp(x))

}

logit <- function(x) {

log(x/(1 - x))

}

The first function takes a log-odds and returns a probability. The second

takes a probability and returns a log-odds. For example, if we have a simple

logistic regression model as defined as:

logitP (Y = 1 | X) = β0 + β1X

CONSTRUCTING USER DEF INED FUNCTIONS IN R 3

where β0 = −1.5 and β1 = −0.5 for X ∈ [0, 1], then, for individuals with

X = 1 and X = 0, we have:

expit(-2)

[1] 0.1192029

expit(-1.5)

[1] 0.1824255

logit(0.2)

[1] -1.386294

logit(0.18)

[1] -1.516347

In the above functions, the arguments are x, and the return statement is

implicit: because the only thing created within these functions are the expit

and logit objects, they are automatically returned in the function.

2 A Basic Simulation Function

Here is a basic function that simulates a continuous covariate c a binary out-

come y. The function takes three arguments: nsim, which is an indexing

argument whose use will become clear soon; sample_size, and parameter,

which is the odds ratio for the association between the covariate c and the

outcome y.

The function outputs four items: the first is the indexing argument; the

second is the sample size; the third is the mean of the outcome y, which will

depend on the intercept value and the odds ratio parameter; the fourth is the

estimated log-odds ratio for the association between c and y. Here is the

function:

CONSTRUCTING USER DEF INED FUNCTIONS IN R 4

set.seed(123)

simulation_function <- function(nsim, sample_size, parameter) {

data generation

c <- rnorm(sample_size, mean = 0, sd = 1)

p_y <- expit(-2 + log(parameter) * c)

y <- rbinom(sample_size, size = 1, p = p_y)

a_data <- data.frame(c, y)

analysis

mY <- mean(a_data$y)

glm_fit <- glm(y ~ c, data = a_data, family = binomial("logit"))

glm_res <- summary(glm_fit)$coefficients[2, 1]

sim_res <- c(nsim, sample_size, parameter, mY, glm_res)

return(sim_res)

}

Running the above code initiates the function. Let’s run a little simulation:

simulation_function(nsim = 1, sample_size = 500, parameter = 2)

[1] 1.0000000 500.0000000 2.0000000 0.1180000 0.9608086

Of course, running a single iteration of this simulation is not going to help

us. Instead, we want to be able to generate a large number of log-odds ratio

estimates to we can evaluate some properties of this distribution. We can do

CONSTRUCTING USER DEF INED FUNCTIONS IN R 5

this with one of the many iterative functions available to us in R. These include

for loops as well as the apply family of functions.

3 For Loops in R

We’ll start with using for loops to run the simulation function several times.

simulation_results <- NULL

for(i in 1:10){

simulation_results <- rbind(

simulation_results,

simulation_function(nsim = i, sample_size = 500, parameter = 2)

)

}

simulation_results

[,1] [,2] [,3] [,4] [,5]

[1,] 1 500 2 0.136 0.7794415

[2,] 2 500 2 0.120 0.9628786

[3,] 3 500 2 0.140 0.6097010

[4,] 4 500 2 0.146 0.6789281

[5,] 5 500 2 0.140 0.6448806

[6,] 6 500 2 0.138 0.7061543

[7,] 7 500 2 0.144 0.9168108

[8,] 8 500 2 0.134 0.7159953

[9,] 9 500 2 0.134 0.7376969

[10,] 10 500 2 0.144 0.7773598

The above code creates an empty R object we called simulation_results

and then ran a for loop which assigned the results of the first iteration of the

loop to the empty object. The second iteration results are then appended to the

first using the rbind function, and the process continues until the last for loop

iteration.

We can use another approach with for loops in R. This second approach

CONSTRUCTING USER DEF INED FUNCTIONS IN R 6

starts with constructing an empty list to store the results in, as opposed to a

NULL object:

simulation_results <- list()

for(i in 1:10){

simulation_results[[i]] <- simulation_function(nsim = i, sample_size = 500, parameter = 2)

}

simulation_results

[[1]]

[1] 1.0000000 500.0000000 2.0000000 0.1460000 0.7485483

##

[[2]]

[1] 2.000000 500.000000 2.000000 0.120000 0.534538

##

[[3]]

[1] 3.0000000 500.0000000 2.0000000 0.1400000 0.8073003

##

[[4]]

[1] 4.0000000 500.0000000 2.0000000 0.1560000 0.9765668

##

[[5]]

[1] 5.0000000 500.0000000 2.0000000 0.1620000 0.9902378

##

[[6]]

[1] 6.000000 500.000000 2.000000 0.122000 0.600954

##

[[7]]

[1] 7.0000000 500.0000000 2.0000000 0.1400000 0.6138803

##

[[8]]

[1] 8.0000000 500.0000000 2.0000000 0.1380000 0.4679613

##

[[9]]

CONSTRUCTING USER DEF INED FUNCTIONS IN R 7

[1] 9.0000000 500.0000000 2.0000000 0.1500000 0.6392804

##

[[10]]

[1] 10.0000000 500.0000000 2.0000000 0.1040000 0.6449406

This approach is sometimes a little faster to run, but requires some post-

processing to fix the list. We can do this using the do.call function, which

takes another function (in this case, rbind) as an argument, and applies it to

the second argument1: 1 We can also use the rbindlist function,
which is available in the data.table
package

library(data.table)

sim_res <- do.call(rbind, simulation_results)

sim_res

[,1] [,2] [,3] [,4] [,5]

[1,] 1 500 2 0.146 0.7485483

[2,] 2 500 2 0.120 0.5345380

[3,] 3 500 2 0.140 0.8073003

[4,] 4 500 2 0.156 0.9765668

[5,] 5 500 2 0.162 0.9902378

[6,] 6 500 2 0.122 0.6009540

[7,] 7 500 2 0.140 0.6138803

[8,] 8 500 2 0.138 0.4679613

[9,] 9 500 2 0.150 0.6392804

[10,] 10 500 2 0.104 0.6449406

4 The Apply Family of Functions

Instead of a for loop, we can use candidate algorithms in the apply family

of functions. These functions include apply, lapply, sapply, mapply, and

tapply. The apply and tapply functions are often used to apply a function

to one or more columns of data. They can be useful in simulation studies, but

we’re going to focus here on lapply, sapply, and mapply.

CONSTRUCTING USER DEF INED FUNCTIONS IN R 8

4.1 lapply

The one I use most frequently in the context of simulation studies is the

lapply function. It operates very much like a for loop that populates an

empty list.

simulation_results <- lapply(1:10, function(x)

simulation_function(nsim = x, sample_size = 500, parameter = 2)

)

simulation_results

[[1]]

[1] 1.0000000 500.0000000 2.0000000 0.1260000 0.8316456

##

[[2]]

[1] 2.0000000 500.0000000 2.0000000 0.1280000 0.3415096

##

[[3]]

[1] 3.0000000 500.0000000 2.0000000 0.1280000 0.6634622

##

[[4]]

[1] 4.0000000 500.0000000 2.0000000 0.1320000 0.8254062

##

[[5]]

[1] 5.0000000 500.0000000 2.0000000 0.1320000 0.6364461

##

[[6]]

[1] 6.0000000 500.0000000 2.0000000 0.1120000 0.6431364

##

[[7]]

[1] 7.0000000 500.0000000 2.0000000 0.1220000 0.7788064

##

[[8]]

[1] 8.0000000 500.0000000 2.0000000 0.1240000 0.7048815

##

CONSTRUCTING USER DEF INED FUNCTIONS IN R 9

[[9]]

[1] 9.0000000 500.0000000 2.0000000 0.1300000 0.8443099

##

[[10]]

[1] 10.0000000 500.0000000 2.0000000 0.1220000 0.6223795

do.call(rbind, simulation_results)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 500 2 0.126 0.8316456

[2,] 2 500 2 0.128 0.3415096

[3,] 3 500 2 0.128 0.6634622

[4,] 4 500 2 0.132 0.8254062

[5,] 5 500 2 0.132 0.6364461

[6,] 6 500 2 0.112 0.6431364

[7,] 7 500 2 0.122 0.7788064

[8,] 8 500 2 0.124 0.7048815

[9,] 9 500 2 0.130 0.8443099

[10,] 10 500 2 0.122 0.6223795

4.2 sapply

We can use sapply too, but need to format the output of this function slightly

differently.

simulation_results <- sapply(1:10, function(x)

simulation_function(nsim = x, sample_size = 500, parameter = 2),

simplify = T

)

simulation_results

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 2.0000000 3.0000000 4.0000000 5.0000000 6.0000000

[2,] 500.0000000 500.0000000 500.0000000 500.0000000 500.0000000 500.0000000

[3,] 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000

CONSTRUCTING USER DEF INED FUNCTIONS IN R 10

[4,] 0.1340000 0.1420000 0.1400000 0.1220000 0.1340000 0.1320000

[5,] 0.5730563 0.6960024 0.6341226 0.6185285 0.5704796 0.8771361

[,7] [,8] [,9] [,10]

[1,] 7.0000000 8.0000000 9.0000000 10.0000000

[2,] 500.0000000 500.0000000 500.0000000 500.0000000

[3,] 2.0000000 2.0000000 2.0000000 2.0000000

[4,] 0.1540000 0.1180000 0.1540000 0.1240000

[5,] 0.8272415 0.7592709 0.6899982 0.4811386

note the transpose!

t(simulation_results)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 500 2 0.134 0.5730563

[2,] 2 500 2 0.142 0.6960024

[3,] 3 500 2 0.140 0.6341226

[4,] 4 500 2 0.122 0.6185285

[5,] 5 500 2 0.134 0.5704796

[6,] 6 500 2 0.132 0.8771361

[7,] 7 500 2 0.154 0.8272415

[8,] 8 500 2 0.118 0.7592709

[9,] 9 500 2 0.154 0.6899982

[10,] 10 500 2 0.124 0.4811386

In my experience, sapply is sometimes a slower function, possibly because

it builds a set of results along columns as opposed to a list. However, we will

later do a test to evaluate the performance speed of sapply and lapply (we

will do this in the section on computing and profiling functions).

4.3 mapply

Another function that we can use is the mapply function, which is someone

different from the previous two. To extend our example, let’s say that instead

of looping over the simulation index nsim, suppose we also wanted to look

at the impact of different sample sizes (say 250 and 500). This creates a

situation where we have to loop the function over two arguments instead of

one. This is where mapply can come in useful:

CONSTRUCTING USER DEF INED FUNCTIONS IN R 11

simulation_results <- mapply(simulation_function,

nsim = 1:10, # number of simulations

sample_size = rep(c(250,500), each=10), # sample size

parameter = 2, # other function arguments

SIMPLIFY = T) # need to simplify for proper formatting

t(simulation_results)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 250 2 0.104 0.8059524

[2,] 2 250 2 0.164 0.7439719

[3,] 3 250 2 0.160 0.4177259

[4,] 4 250 2 0.128 0.8803293

[5,] 5 250 2 0.144 0.7543569

[6,] 6 250 2 0.148 0.5727400

[7,] 7 250 2 0.120 1.0666401

[8,] 8 250 2 0.144 0.6444885

[9,] 9 250 2 0.144 0.8696708

[10,] 10 250 2 0.164 0.6472104

[11,] 1 500 2 0.146 0.7295056

[12,] 2 500 2 0.124 0.4724984

[13,] 3 500 2 0.146 0.7664200

[14,] 4 500 2 0.146 0.7065716

[15,] 5 500 2 0.140 0.7841973

[16,] 6 500 2 0.120 0.7528922

[17,] 7 500 2 0.160 0.7487138

[18,] 8 500 2 0.160 0.6217614

[19,] 9 500 2 0.134 0.9040787

[20,] 10 500 2 0.144 0.6845667

sim_res <- t(simulation_results)

colnames(sim_res) <- c("index", "sample_size", "parameter", "meanY", "log_OR")

CONSTRUCTING USER DEF INED FUNCTIONS IN R 12

head(sim_res, 3)

index sample_size parameter meanY log_OR

[1,] 1 250 2 0.104 0.8059524

[2,] 2 250 2 0.164 0.7439719

[3,] 3 250 2 0.160 0.4177259

tail(sim_res, 3)

index sample_size parameter meanY log_OR

[18,] 8 500 2 0.160 0.6217614

[19,] 9 500 2 0.134 0.9040787

[20,] 10 500 2 0.144 0.6845667

This mapply function provides us with a general way to explore a range

of different simulation specifications. However, it can sometimes be a little

tricky to keep track of all the arguments in a function, their range of values,

and whether the mapply function is returning results for each combination of

interest. In the next section, we cover a technique that can sometimes come in

handy when trying to loop over multiple arguments.

4.4 A Generalization of sapply and lapply to Multiple Argument Loops

Consider a scenario where we might be interested in modifying the sample size

and the parameters for the logistic regression model used to simulate our data.

Let’s say, in particular, we want to do 10 simulations, under two sample sizes

(250 and 500), and under two parameter values (0.5 and 2). We can do this

with mapply as follows:

simulation_results <- mapply(simulation_function,

nsim = 1:10, # number of simulations

sample_size = rep(c(250, 500), each = 10), # sample size

parameter = rep(c(.5, 2), each = 20), # other function arguments

SIMPLIFY = T) # need to simplify for proper formatting

sim_res <- t(simulation_results)

CONSTRUCTING USER DEF INED FUNCTIONS IN R 13

However, notice that for the rep function, the each argument is different

between the sample_size and parameter arguments passed to the mapply

function. At some point, this can become difficult to track, especially when

there are multiple arguments to the simulation function, each with multiple

different dimensions.

Instead of mapply, we can use a dataset based approach using another

function called expand.grid. The first step is to set up a dataset that in-

cludes values for all the parameters we are interested in:

parm_data <- expand.grid(

index = 1:10,

n = c(250, 500, 1000),

parms = c(.5, 2)

)

With this, we can modify our function to look like the following:

simulation_results <- lapply(1:nrow(parm_data), function(x)

simulation_function(nsim = parm_data[x,]$index,

sample_size = parm_data[x,]$n,

parameter = parm_data[x,]$parms)

)

sim_res <- do.call(rbind, simulation_results)

colnames(sim_res) <- c("index", "sample_size", "parameter", "meanY", "log_OR")

head(sim_res, 3)

index sample_size parameter meanY log_OR

[1,] 1 250 0.5 0.144 -0.9534398

[2,] 2 250 0.5 0.124 -0.9143330

[3,] 3 250 0.5 0.116 -0.6507084

CONSTRUCTING USER DEF INED FUNCTIONS IN R 14

tail(sim_res, 3)

index sample_size parameter meanY log_OR

[58,] 8 1000 2 0.139 0.6218280

[59,] 9 1000 2 0.148 0.7823719

[60,] 10 1000 2 0.140 0.5546487

Importantly, we are using the lapply function, but instead of indexing

over the number of Monte Carlo samples we want, we are indexing over all of

the combinations of unique parameter values in the parm_data dataset. By

putting all the parameters in a data.frame using the expand.grid function,

we can deploy a simulation function with multiple arguments and only a single

looping index. This strategy can become useful with particularly complex

simulation functions with multiple arguments of varying lengths.

5 Understanding Seeds

One essential component of successfully deploying a simulation study is the

appropriate use of seeds to fix the random number generator that R relies on

to generate pseudo-randomness so that we might be able to reproduce the

results. In this section, we’ll cover how seeds work in R, how to use them, and

common mistakes that should be avoided.

To understand seeds, it is important to understand the idea of a pseudo

random number generator. The basic idea behind a pseudo-random number

generator is to find a sequence of digits with no apparent pattern or regularities

to them. For example, if we can establish that the sequence of digits in the

constant π doesn’t have any regular patterns to it, we can use it as our base to

generate randomness:

3.14159265358979 · · ·

The so-called “pseudo-randomness” occurs in the transition from one number

in the sequence to the next. For example, if we start the random number se-

quence at the third digit (4), the next numbers in the sequence will be 1, then 5,

then 9, and so on.

Since there is no obvious predictability or regularity in this sequence, we

CONSTRUCTING USER DEF INED FUNCTIONS IN R 15

can use these digits as the base to initialize a range of complex functions that

mimic random behavior.

However, because π is a fixed constant, the numbers in the sequence don’t

change. So, if we want to initialize functions that mimic randomness, but want

to be able to reproduce this randomness, we can use a seed value to start the

random sequence at the same point every time.

In the above simplified π example, we could say that the “seed” value will be

3, because we relied on the third digit in the sequence.

The above description of seeds and random number generators is obviously

way simplified. However, this example represents the core idea of a seed, and

sets the stage for understanding some of the negative consequences that we

can encounter using seed values.

6 Using Seeds in R

Near the beginning of this pdf document, we set a seed value to demonstrate

the use of for loops and the apply family for a simple simulation study. We

used set.seed(123) to do this. It is possible that this seed value will affect

all analyses in subsequent code chunks in the document,2 so let’s take the 2 I don’t actually think this is true, but it’s
a good opportunity to demonstrate how to
reset seeds.opportunity to reset it here:

set.seed(NULL)

Now that we’ve initialized a clean slate with respect to the random number

generator, we can explore the use of seeds in R. Let’s start with generating five

realizations of a draw from a uniform distribution and a Poisson distribution

with a mean of two:

a <- runif(5)

b <- rpois(5, lambda = 2)

Let’s look at the values of a and b generated from this run:

CONSTRUCTING USER DEF INED FUNCTIONS IN R 16

a

[1] 0.2235426 0.2335404 0.7526581 0.4292375 0.9095494

b

[1] 1 0 4 1 1

I’d like to be able to tell you what these numbers are, but I can’t, since every

time I render this RMarkdown document, they change. We can use seeds to fix

this:

set.seed(123)

a <- runif(5)

b <- rpois(5, lambda = 2)

a

[1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673

b

[1] 0 2 4 2 2

Now, every time we run this code chunk, we get exactly the same values for

a and b, which are 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673 for a

and 0 1 1 1 1 for b.

6.1 Setting Seeds Once and Only Once

In most settings, it’s important to avoid setting the seed multiple times during a

single session, since this can lead to unwanted dependencies between pseudo-

random variables generated in the session. A good example of this problem

can be demonstrated by continuing the above example. This time, we’ll set

the seed once before each initialization of the random variable generator.

CONSTRUCTING USER DEF INED FUNCTIONS IN R 17

We’ll also increase the sample size to 50,000. These two variables should

be independent because the mean of the poisson random variable does not

depend on the value of the simulated uniform random variable (and vice versa):

re-initialize the seed

set.seed(NULL)

set.seed(123)

a <- runif(50000)

set.seed(123)

b <- rpois(50000, lambda = 2)

We can fit a regression model to evaluate the statistical relationship be-

tween b and a:

summary(lm(b ~ a))$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.3077963 0.004098892 -75.09256 0

a 4.6156121 0.007129870 647.36270 0

This demonstrates a strong association between these two variables that

should be independent, which is also established in the following figure:

plot_dat <- tibble(uniform = a, poisson = b)

ggplot(plot_dat, aes(x = uniform, y = poisson)) +

geom_point() +

geom_smooth(method='lm', se = F)

CONSTRUCTING USER DEF INED FUNCTIONS IN R 18

0

3

6

9

0.00 0.25 0.50 0.75 1.00
uniform

po
is

so
n

The plot above demonstrates a clear problem: higher/lower values of the

uniform distribution are associated with higher/lower values of the Poisson

distribution, even though these two variables should be independent3 3 Importantly, note that no information in the
uniform distribution is used to define the
Poisson distribution, and vice versa.Why is this occurring? It turns out that in R (as in many other statistical

software platforms) the way the Poisson random variable is generated is

based on a procedure known as the inverse transformation method [Roberts

and Casella (2010); p44]. This approach starts with a uniform distribution to

generate the Poisson random variable. So the problem that arises is that the

exact same uniform random variable that is generated in a is used to generate

the Poisson random variable defined in b.

What should this plot look like if we want to construct two truly independent

random variables from a uniform and Poisson distribution? We can see this

with the use of only a single seed initiated in the code chunk:

re-initialize the seed

set.seed(NULL)

set.seed(123)

a <- runif(50000)

#set.seed(123)

b <- rpois(50000, lambda = 2)

summary(lm(b ~ a))$coefficients

CONSTRUCTING USER DEF INED FUNCTIONS IN R 19

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.00809358 0.01264939 158.75029241 0.0000000

a -0.00119338 0.02200314 -0.05423681 0.9567467

plot_dat <- tibble(uniform = a, poisson = b)

ggplot(plot_dat, aes(x = uniform, y = poisson)) +

geom_point() +

geom_smooth(method='lm', se = F)

0.0

2.5

5.0

7.5

10.0

0.00 0.25 0.50 0.75 1.00
uniform

po
is

so
n

This example serves to illustrate the danger of setting the seed multiple

times in a given session. Notably, if you construct a simulation to evaluate the

property of an estimator that assumes some form of independence between

random variables, and you generate these variables with a strong dependence

between them, the underlying assumptions of the simulation study will be

violated, and the conclusions drawn from the study may be misleading.

CONSTRUCTING USER DEF INED FUNCTIONS IN R 20

References

C Roberts and G Casella. Introducing Monte Carlo Methods with R. Springer US,

New York, NY, 2010.

	Constructing User Defined Functions in R
	A Basic Simulation Function
	For Loops in R
	The Apply Family of Functions
	Understanding Seeds
	Using Seeds in R

