
Designing Simulation Studies
Ashley I Naimi

Spring 2024

Contents

1 The Aims of a Simulation Study 2

1.1 Understanding p-values 3

1.2 Non-Collapsibility of the OR 7

2 Defining your Data Generating Mechanism Using Directed Acyclic Graphs 13

3 What is Your Estimand? 17

4 No, really, What is Your Estimand? 18

5 The True Value and Monte Carlo Integration 18

DESIGNING SIMULATION STUDIES 2

1 The Aims of a Simulation Study

So far in the course, we’ve mostly covered technical ingredients needed to con-

duct a simulation study. These include things such writing functions, deploying

loops, and using seeds. In this section, we’re going to take a look at some

more general, less technical items that need to be considered when designing

and implementing a simulation study.

Much of this short course is motivated by an excellent article on conducting

simulation studies by Morris et al. (2019). In this article, the authors outline the

ADEMP framework for motivating a simulation study, which stands for:

• Aims

• Data Generating Mechanisms

• Estimands

• Methods

• Performance Measures

We’ll cover these next, starting with the aims of a simulation study. There

are a wide variety of reasons on why one might conduct a simulation study.

Among these include:

• checking whether a given algebraic solution or new code to deploy a particu-

lar method works as expected.

• assessing the finite-sample properties of methods whose validity has been

established using asymptotic approximations.

• comparing two or more different statistical methods under identical simu-

lated conditions.

• calculating sample sizes or power for a given study design under known

conditions.

• unpacking a particular method to better understand it’s underlying logic.

• understanding the importance of certain assumptions on the validity of a

particular method.

Let’s provide some examples of simulation studies motivated by some of

these aims.

DESIGNING SIMULATION STUDIES 3

1.1 Understanding p-values

This example is less of a simulation study and more of a simulation illustra-

tion. The primary aim of this example is to demonstrate some of the underlying

logic of a p-value. P-values are notoriously difficult to understand and interpret

(?), and led to a considerable and voluminous literature on the topic. We can

demonstrate some basic ideas with a very simple simulated dataset.

The following two-by-two table demonstrates some simple data we can do

this with:

rct_data <- matrix(

c(53,193,139,350),

ncol=2,

byrow=T)

colnames(rct_data) <- c("event","nonevent")

rownames(rct_data) <- c("exposed","unexposed")

rct_data <- as.table(rct_data)

rct_data

event nonevent

exposed 53 193

unexposed 139 350

We can estimate the risk ratio, defined as the ratio of the probability of the

outcome in the exposed versus unexposed:

risk_ratio <- (rct_data[1, 1]/sum(rct_data[1,]))/(rct_data[2,

1]/sum(rct_data[2,]))

round(risk_ratio, 2)

[1] 0.76

We can also use standard equations to obtain an estimate of the standard

error for this risk ratio:

DESIGNING SIMULATION STUDIES 4

SE_lnRR <- sqrt((1/rct_data[1, 1] - 1/sum(rct_data[1,])) + (1/rct_data[2,

1] - 1/sum(rct_data[2,])))

Using this standard error and risk ratio, we can construct a p-value using a

standard z-test:

z <- (log(risk_ratio) - 0)/SE_lnRR

round(2 * pnorm(-abs(z)), 4)

[1] 0.0498

This p-value suggests the probability of observing a risk ratio of 0.76 or

larger (in absolute value) if there were no actual association between the

exposure and the outcome is 0.0498. Unfortunately, this example doesn’t shed

much intuitive light on what’s happening here.

Instead, we can break this procedure into several underlying steps. First,

we’ll construct a long dataset out of the table:

rct_data

event nonevent

exposed 53 193

unexposed 139 350

rct_data_long <- rbind(matrix(rep(c(1, 1), rct_data[1, 1]), ncol = 2),

matrix(rep(c(0, 1), rct_data[2, 1]), ncol = 2), matrix(rep(c(1,

0), rct_data[1, 2]), ncol = 2), matrix(rep(c(0, 0), rct_data[2,

2]), ncol = 2))

nrow(rct_data_long)

[1] 735

re-shuffle rows

rct_data_long <- data.frame(rct_data_long[sample(nrow(rct_data_long)),

])

names(rct_data_long) <- c("X", "Y")

DESIGNING SIMULATION STUDIES 5

Our new dataset looks like this:

head(rct_data_long)

X Y

1 0 0

2 0 1

3 0 0

4 0 1

5 1 0

6 0 0

The first thing we’ll do with this dataset is based on the assumption that

there is no effect of the exposure on the outcome (the null hypothesis). If this

is the case, then it follows that shuffling around (or permuting) the expsoure

and re-estimating the risk ratio every time we shuffle would give us a valid

distribution of the effect around the null. For example, we can pick (randomly)

the exposure value for observation 732 and switch that value with observation

4.

Doing this randomly for each observation would give as a new dataset in

which everyone’s exposure value was switched, but there outcome remained

the same.

This is where the simulation can come in useful. We can construct a variety

of different datasets .

If we did this re-shuffling and re-estimation multiple times, we’d get a distri-

bution of risk ratios that looked like this:

set.seed(123)

rr_permuted <- NULL

permutations <- 20000

for(i in 1:permutations){

permuted <- rct_data_long

DESIGNING SIMULATION STUDIES 6

permuted$X <- permuted$X[sample(length(permuted$X))] # shuffle the exposure, N = 735

res <- log(mean(subset(permuted,X==1)$Y)/mean(subset(permuted,X==0)$Y)) # recalculate RR

rr_permuted <- rbind(rr_permuted,res)

}

rr_permuted <- data.frame(rr_permuted)

names(rr_permuted) <- "estimates"

0

1

2

3

4

−0.50 −0.25 0.00 0.25
estimates

de
ns

ity

Figure 1: Distribution of log risk ratios after
2,000 random permutations of the expo-
sure variable in the 2x2 table data above.
The solid blue density curve represents a
nonparametric kernel density estimate of
the distribution. The solid red density curve
represents a normal density estimate of the
distribution. The dashed red vertical line indi-
cates the value of the log risk ratio estimated
in the original unpermuted data.

This permutation procedure gives us a critical component of a significance

test: the distribution of the estimates under the null. It turns out, we can

compute the p-value directly from this distribution.

There are a total of 2 × 104 estimates. How many of them are the same

as or “more extreme” than the one we estimated in the actual data? We can

compute this easily:

sum(rr_permuted$estimate <= log(risk_ratio))

[1] 366

Dividing the number of estimates that are as or more extreme than the

original risk ratio by 2× 104 gives us a one-sided p-value:

sum(rr_permuted$estimate <= log(risk_ratio))/permutations

[1] 0.0183

DESIGNING SIMULATION STUDIES 7

To get a two-sided test, we simply take the absolute values of both the

original risk ratio and each estimate obtained in the permutation test, and

repeat the comparison. Note that we have to change the direction of the “less

than” sign for this to work:

sum(abs(rr_permuted$estimate) >= abs(log(risk_ratio)))/permutations

[1] 0.02825

1.2 Non-Collapsibility of the OR

The next example will look at the impact of non-collapsiblility of the odds

ratio (Greenland et al., 1999, Greenland (2005),Pang et al. (2013a)). The odds

ratio is a non-collapsible measure of association, and for this reason its use in

epidemiology is somewhat controversial (Pang et al., 2013b, Kaufman2010a).

Non-collapsibility is a mathematical property of the odds ratio that results from

Jensen’s inequality (the average of a non-linear function does not equal the

function its average; see Greenland and Pearl (2011)), and has confused many a

statistician and epidemiologist (Greenland et al., 1999; Hernán et al., 2011).

In simple terms, non-collapsibility of the OR will be apparent when esti-

mating an adjusted exposure-outcome association using a conditional and

marginal approach (using standard logistic regression for the conditional

approach, and IP-weighting or marginal standardization for the marginal ap-

proach). For example, in Figure 2,

A

C

Y

1

Figure 2: Simple confounding triangle, with
exposure A, confounder C , and outcome Y .

we can adjust for the confounding effects of C conditionally using standard

regression model:

logitP (Y = 1 | A,C) = β0 + β1A+ β2C,

DESIGNING SIMULATION STUDIES 8

and interpreting β1 as the conditionally adjusted effect. Or, we can output

predicted probabilities from this model for each person in the sample under

two conditions: A = 1 and A = 0. We can then average these two proba-

bilities over the sample, and compare the odds for the A = 1 to the odds for

the A = 0. To explore the impact of noncollapsibility, we can simulate data

following the causal relation in Figure 2.

Noncollapsibility is less of an issue when the outcome is rare. Often, the

threshold for defining “rarity” is taken to be ⪅ 10%. But how valid is this ⪅ 10%

cutoff? We can answer this using Monte Carlo simulation. To do this, let’s

simulate data following the causal relation in Figure 2.

expit <- function(a){1/(1+exp(-a))}

set.seed(123)

n = 500

simulate confounder from a normal distribution

first argument is sample size

second argument is mean

third argument is SD

C <- rnorm(n,0,1)

propensity model

theta is a 2-dimensional vector (list) of parameters for the exposure model

theta[1] is the intercept and theta[2] is the log-OR for the confounder-exposure relation

pi is the probability that the exposure is 1

theta <- c(0,log(2))

pi <- expit(theta[1]+theta[1]*C)

simulate exposure from binomial distribution

second argument is number of trials

third argument is probability that A = 1

A <- rbinom(n,1,pi)

outcome model

DESIGNING SIMULATION STUDIES 9

beta is a 3-dimensional vector (list) of parameters for the outcome model

beta[1] is the intercept, beta[2] is the exp(OR) for the exposure-outcome relation

beta[3] is the log-OR for the confounder-outcome relation

beta <- c(-2.75,log(2),log(2))

mu <- expit(beta[1] + beta[2]*A + beta[3]*C)

Y <- rbinom(n,1,mu)

Our result of interest from this simulation study will be how collapsibility

is affected by the prevalence of the outcome, and whether a ⪅ 10% outcome

prevalence is sufficient to render the conditional and marginal OR approxi-

mately equal. The prevalence of Y can be changed by varying the intercept

parameter in the outcome model above (beta[1]). To answer our question,

we will need to store the prevalence of Y in a variable:

glm.res0 is the outcome's prevalence

we store this to ouput it from the function

glm.res0 <- mean(Y)

print(glm.res0)

[1] 0.102

So our outcome prevalence is 10.2%. Our dataset consists of three vari-

ables, and the first and last three entries are:

head(data.frame(Y,A,C=round(C,2)),3)

Y A C

1 0 0 -0.56

2 1 1 -0.23

3 0 0 1.56

tail(data.frame(Y,A,C=round(C,2)),3)

Y A C

DESIGNING SIMULATION STUDIES 10

498 0 0 0.16

499 0 1 0.36

500 0 0 0.55

We can now estimate the conditionally and marginally adjusted odds ratios

in this sample of 500 observations. We can fit a conditionally adjusted model

using the following code:

estimate the true exposure odds ratio using a conditonally adjusted logit model

NB: conditionally adjusted logit model is not the same as "conditional logistic regression"

glm.res1 is the conditional log-odds ratio

m1 <- glm(Y~A+C,family=binomial(link="logit"))

glm.res1 <- m1$coefficients[2]

We can fit a marginally adjusted approach using the following code:

estimate the true exposure odds ratio using a marginally adjusted logit model

compute the average predicted probabilities under A = 1 and then A = 0

muhat1 <- mean(predict(m1,newdata=data.frame(A=1,C),type="response"))

muhat0 <- mean(predict(m1,newdata=data.frame(A=0,C),type="response"))

compute the odds from these average probabilities

odds1 <- muhat1/(1-muhat1)

odds0 <- muhat0/(1-muhat0)

glm.res2 is the marginal log-odds ratio

glm.res2 <- log(odds1/odds0)

Summarizing our results, we found that for an outcome prevalence of 10.2%,

the conditionally adjusted OR was 2.41, and the marginally adjusted OR was

2.29. Not a huge difference. Keep in mind, this simulation study is extremely

limited. We only used a single sample of 500 observations. Thus, the pattern in

these results can be explained entirely by random noise. In typical simulation

studies, one would repeat the above process 1,000, 5,000 or even 10,000 times,

and take the averages of each result.

DESIGNING SIMULATION STUDIES 11

Let’s fix this briefly to see if it changes anything:

expit<-function(a){1/(1+exp(-a))}

set.seed(123)

collapsibility_function <- function(index, intercept){

n=500

C <- rnorm(n,0,1)

theta <- c(0,log(2))

pi <- expit(theta[1]+theta[1]*C)

A <- rbinom(n,1,pi)

beta <- c(intercept,log(2),log(2))

mu <- expit(beta[1] + beta[2]*A + beta[3]*C)

Y <- rbinom(n,1,mu)

glm.res0 <- mean(Y)

m1 <- glm(Y~A+C,family=binomial(link="logit"))

glm.res1 <- m1$coefficients[2]

muhat1 <- mean(predict(m1,newdata=data.frame(A=1,C),type="response"))

muhat0 <- mean(predict(m1,newdata=data.frame(A=0,C),type="response"))

compute the odds from these average probabilities

odds1 <- muhat1/(1-muhat1)

odds0 <- muhat0/(1-muhat0)

glm.res2 is the marginal log-odds ratio

glm.res2 <- log(odds1/odds0)

DESIGNING SIMULATION STUDIES 12

res <- data.frame(prevalenceY = glm.res0,

conditionalOR = glm.res1,

marginalOR = glm.res2)

return(res)

}

sim_res <- lapply(1:2000, function(x) collapsibility_function(index = x, intercept = -2.75))

sim_res <- do.call(rbind, sim_res)

head(sim_res)

prevalenceY conditionalOR marginalOR

A 0.102 0.8788807 0.8304875

A1 0.112 0.6993057 0.6719350

A2 0.110 0.4518576 0.4313098

A3 0.094 0.7279202 0.7009233

A4 0.080 0.9304425 0.8760232

A5 0.098 0.9770572 0.9490961

mean(sim_res$conditionalOR)

[1] 0.7177079

mean(sim_res$marginalOR)

[1] 0.6844239

Once again, not a major difference. The next step would be to evaluate how

the prevalence of the outcome affects the difference in the conditionally and

marginally adjusted odds ratios, but we’ll leave that for later if time permits.

DESIGNING SIMULATION STUDIES 13

2 Defining your Data Generating Mechanism Using Directed Acyclic

Graphs

In designing a simulation study, it is important to understand how to generate

random variables so that the relevant causal and statistical associations

between them hold as expected. An important tool in accomplishing this

goal is the use of causal diagrams, or directed acyclic graphs. Figures 2 is a

directed acyclic graph, which must generally be drawn using rules that govern a

DAG, sometimes referred to as the Markov properties of the model.

A directed acyclic graph is a graphical model with three key properties:

1. All arrows (edges) are directed from one variable (node) to another.

2. There are no cycles/loops in the diagram.

3. All common causes are included in the DAG.

If any of these properties is not met in a particular graphical model, it is

not a DAG. There are several concepts and techniques relevant to the use of

DAGs that we cannot cover here. However, for simulation studies, the most

important concept related to DAGs is the concept of variable exogeneity and /

or endogeneity.

With respect to a particular DAG, a variable is exogenous if it has no arrows

pointing into it. On the other hand, the most endogenous variable in a DAG is

the one that has the most arrows pointing into it. If we re-visit Figure 2, we can

note the following:

A

C

Y

1

Figure 3: Simple confounding triangle, with
exposure A, confounder C , and outcome Y .

• The variable C is most exogenous to this system

• The variable A is second most exogenous

• The variable Y is the most endogenous

Note how this aligns with how we simulated our data:

DESIGNING SIMULATION STUDIES 14

collapsibility_function <- function(index, intercept) {

n = 500

C <- rnorm(n, 0, 1) ## FIRST!!!

theta <- c(0, log(2))

pi <- expit(theta[1] + theta[1] * C)

A <- rbinom(n, 1, pi) ## SECOND!!

beta <- c(intercept, log(2), log(2))

mu <- expit(beta[1] + beta[2] * A + beta[3] * C)

Y <- rbinom(n, 1, mu) ## THIRD!

...

}

This highlights an important point about how we can construct a data-

generating mechanism of interest. If we start with a DAG, we can use each

variables relative exogeneity to determine how we can simulate a dataset of

interest. As a more complicated example, consider the following mediation

diagram:

ZX Y

C

L U

1

Figure 4: Complex mediation diagram with
unmeasured confounder U , baseline con-
founders C , mediator-outcome confounder
affected by the exposure L, mediator Z ,
exposure X , and outcome Y .

This DAG might be used to motivate a simulation study on the properties

of different methods to quantify mediation effects (e.g., direct and indirect

DESIGNING SIMULATION STUDIES 15

effects). Using the concept of relative exogeneity/endogeneity. We first have

to identify the most exogenous variables, and work our way down to the most

endogenous variables. We can do this by counting the number of arrows that

goes into each variable:

Variable Arrow Number

U 0

C 0

X 1

L 2

Z 2

Y 5

In this table, there are two sets of variables that share a tie. The first are

totally exogenous, and so it doesn’t really matter whether we simulate one first

or the other. The second set that share a tie are the variables L and Z , each

with two arrows. However, in this case, one of the arrows going into Z comes

from L. This means we need to simulate L before we simulate Z.

This suggests that we need to simulate our variables in the following order:

U,C,X,L, Z, Y

We can do this using the following code:

expit <- function(x) {

1/(1 + exp(-x))

}

set.seed(123)

n = 500

U <- rnorm(n)

C <- rnorm(n)

DESIGNING SIMULATION STUDIES 16

X <- rbinom(n, size = 1, p = expit(-1 + log(2) * C))

L <- rnorm(n, mean = 0 + 1.5 * X + 1.5 * U)

Z <- rbinom(n, size = 1, expit(-1.5 + log(2) * X + log(2) * L))

Y <- rnorm(n, mean = 10 + 5 * X + 5 * C + 5 * Z + 4 * L + 4 *

U, sd = 5)

med_data <- data.frame(Y, Z, L, X, C)

head(med_data)

Y Z L X C

1 3.034566 0 0.2109878 0 -0.60189285

2 6.406043 0 0.2776392 0 -0.99369859

3 29.747544 0 2.7716829 0 1.02678506

4 22.100866 0 0.4918470 0 0.75106130

5 9.783017 0 1.4852549 0 -1.50916654

6 19.589532 0 1.5703376 0 -0.09514745

This flexible procedure is a useful tool in generating data from potentially

complex data structures. Note, however, that there is a whole lot in addition to

the ordering of variables that has to be decided to successfully simulate data.

For instance, we simulated the outcome Y based on a normal distribution with

a constant variance. We could have used a binomial or Poisson distribution.

We did not include any interactions between any of these variables in our

simulation. This should be determined on the basis of the question of interest

motivating the simulation. Finally, and perhaps most importantly, we selected

coefficients for our outcome model in such a way that isolates the independent

effect of each variable, without considering the overall effect that we might be

interested in. We’ll discuss this issue in the next sections.

DESIGNING SIMULATION STUDIES 17

3 What is Your Estimand?

In a given study, the estimand is the target parameter we seek to quantify

with the study data. In a simulation setting, the estimand can be identified as

the true underlying relationship in the data that we are primarily interested in

quantifying. For example, in the above Figure 2, there are two possible esti-

mands that we can adopt as our target. The first is the conditionally adjusted

odds-ratio, which in the context of our simulated data is 2. Here is that code

again:

outcome model beta is a 3-dimensional vector (list) of

parameters for the outcome model beta[1] is the

intercept, beta[2] is the exp(OR) for the

exposure-outcome relation beta[3] is the log-OR for the

confounder-outcome relation

beta <- c(-2.75, log(2), log(2))

mu <- expit(beta[1] + beta[2] * A + beta[3] * C)

Y <- rbinom(n, 1, mu)

The second estimand we can pick in this setting is the marginally adjusted

odds-ratio, but the actual value of this estimand is more difficult to determine.

In fact, it will require integration to solve for:

µ(A = a) =

∫
C

expit{β0 + β1a+ β2C}dC

which we can then use to compute the marginally adjusted odds ratio:

µ(A = 1)

1− µ(A = 1)
/

µ(A = 0)

1− µ(A = 0)

The problem is that, even in this simple single C setting, computing this

integral is challenging because of the expit function and the fact that C is nor-

mally distributed. In this case, I never attempt to solve for the true value of the

marginally adjuted odds ratio (or marginally adjusted effect, more generally).

Instead, I rely on the Oracle method, which will be described below.

DESIGNING SIMULATION STUDIES 18

4 No, really, What is Your Estimand?

As we will soon see, we need the true value of the estimand in any situation

we are interested in quantifying bias, mean squared error, or most measures

of estimator performance we usually want from a simulation study. But the

challenge in solving for the true parameter value can be real. Take, for example,

Figure 4 and suppose we are interesed in the effect defined as a contrast of the

outcome that would be observed if everyone in the population were exposed

versus unexposed. How can we determine this from the code we used to

generate our data? This effect is actually represented in the DAG (Figure 4) by

the combined arrows emanating from X into Y . This includes:

Path

X → Y

X → Z → Y

X → L → Y

X → L → Z → Y

We actually know the magnitude of each arrow represented in this Table.

The tough question is, how do we combine them?

5 The True Value and Monte Carlo Integration

Fortunately, there is a general technique that we can use to determine the

actual numerical value of interest, without having to solve for complex integral

equations or determine how to combine multiple effect magnitudes of interest

into a single estimand value of interest. To illustrate this technique, let’s start

with the simpler data generating mechanism evaluating the difference between

the conditionally and marginally adjusted odds ratio. Here’s the data generating

mechanism we used, with a few key differences. First, we put an argument for

the exposure in the function. Second, we generate only the marginally adjusted

odds under a specific exposure value. Third, we increase the sample size to as

large as we can tolerate:

DESIGNING SIMULATION STUDIES 19

expit <- function(a) {

1/(1 + exp(-a))

}

set.seed(123)

collapsibility_function <- function(intercept, exposure) {

n = 5e+06 # five million observations

C <- rnorm(n, 0, 1)

theta <- c(0, log(2))

pi <- expit(theta[1] + theta[1] * C)

A <- exposure # set the exposure to a specific value

beta <- c(intercept, log(2), log(2))

mu <- expit(beta[1] + beta[2] * A + beta[3] * C)

Y <- rbinom(n, 1, mu)

mu_ <- mean(Y) # output the mean of Y under the specific exposure value

compute the odds from these average probabilities

odds <- mu_/(1 - mu_)

output the marginally adjusted odds

return(odds)

}

In this modified function, we can now compute the odds from the data

generating mechanism under a condition where everyone is exposed:

odds1 <- collapsibility_function(intercept = -2.75, exposure = 1)

odds1

DESIGNING SIMULATION STUDIES 20

[1] 0.151236

We can do the same thing where everyone is unexposed:

odds0 <- collapsibility_function(intercept = -2.75, exposure = 0)

odds0

[1] 0.07839244

We can now take the ratio of these two odds to quantify the true value using

Monte Carlo integration:

true_ORm <- odds1/odds0

true_ORm

[1] 1.929217

When implementing this procedure, it’s important to NOT change change

anything else except the exposure status and the sample size in the function

used to conduct the simulation. If something else is changed, you may end up

quantifying an estimand that does not correspond to the effect of interest that

you’re after.

DESIGNING SIMULATION STUDIES 21

References

Sander Greenland. Collapsibility. In Mitchell H. Gail and Jacques Bénichou,

editors, Encyclopedia of Epidemiologic Methods. John Wiley & Sons, Ltd,

2005.

Sander Greenland and Judea Pearl. Adjustments and their consequences—

collapsibility analysis using graphical models. International Statistical

Review, 79(3):401–426, 2011. ISSN 1751-5823. DOI: 10.1111/j.1751-

5823.2011.00158.x. URL http://dx.doi.org/10.1111/j.1751-5823.

2011.00158.x.

Sander Greenland, James M. Robins, and Judea Pearl. Confounding and

collapsibility in causal inference. Stat Sci, 14(1):29–46, 1999.

Miguel A Hernán, David Clayton, and Niels Keiding. The simpson’s paradox

unraveled. International Journal of Epidemiology, 40(3):780–785, 06 2011.

DOI: 10.1093/ije/dyr041. URL http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3147074/.

Tim P. Morris, Ian R. White, and Michael J. Crowther. Using simulation studies

to evaluate statistical methods. Statistics in Medicine, 38(11):2074–2102,

2019.

Menglan Pang, Jay S Kaufman, and Robert W Platt. Studying noncollapsibility

of the odds ratio with marginal structural and logistic regression models.

Stat Methods Med Res, Oct 2013a. DOI: 10.1177/0962280213505804.

Menglan Pang, Jay S Kaufman, and Robert W Platt. Mixing of confounding and

non-collapsibility: a notable deficiency of the odds ratio. Am J Cardiol, 111

(2):302–303, Jan 2013b. DOI: 10.1016/j.amjcard.2012.09.002.

http://dx.doi.org/10.1111/j.1751-5823.2011.00158.x
http://dx.doi.org/10.1111/j.1751-5823.2011.00158.x
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147074/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147074/

	The Aims of a Simulation Study
	Defining your Data Generating Mechanism Using Directed Acyclic Graphs
	What is Your Estimand?
	No, really, What is Your Estimand?
	The True Value and Monte Carlo Integration

