
Performance Measures: Analyzing and Interpreting
Simulation Results
Ashley I Naimi

Spring 2024

Contents

1 Evaluating the Performance of an Estimator 2

1.1 Bias 7

1.2 Mean Squared Error 8

1.3 Bias Standard Error 9

1.4 Confidence Interval Coverage and Length 10

1.5 Power 12

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 2

1 Evaluating the Performance of an Estimator

Often, a Monte Carlo simulation function will return data on the estimator or

estimators being evaluated. Typically, these data might look something like the

following:

Estimator Estimate SE index N

CATE_m0_glm 0.014032436 0.032976105 1 1200

CATE_m1_glm -0.614720936 0.037829332 1 1200

CATE_m0_grf 0.021007357 0.032284058 1 1200

CATE_m1_grf -0.60965855 0.034149359 1 1200

This table is an excerpt from an actual simulation study we are conduct-

ing in our group. In this Table, each row represents a particular estimator or

version of the estimator under study. The first column identifies the estimator

or version of the estimator, the “Estimate” and “Standard Error” columns rep-

resent, the “index” represents the Monte Carlo number, and N is the sample

size.

For the most part in this short course, we have covered tools and tech-

niques that we can use to generate data such as these. Once we have the

dataset, we have to determine what we want to use to measure the perfor-

mance of each estimator. We discuss those tools here. They include bias,

mean squared error, a measure of standard error bias (we sometimes refer to

as efficiency), confidence interval coverage and length, and power.

To illustrate these measures, we’re going to use our non-collapsibility func-

tion again. This time, we’ll add a bootstrap resampling approach to obtain

standard errors for the marginally adjusted odds ratio to demonstrate some of

these metrics.

First, we’ll need to estimate the true marginally adjusted odds ratio using

Monte Carlo integration:

expit <- function(a){1/(1+exp(-a))}

set.seed(123)

collapsibility_function <- function(index, intercept, exposure){

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 3

n = 500000000

C <- rnorm(n,0,1)

theta <- c(0,log(2))

pi <- expit(theta[1]+theta[1]*C)

A <- exposure

beta <- c(intercept,log(2),log(2))

mu <- expit(beta[1] + beta[2]*A + beta[3]*C)

Y <- rbinom(n,1,mu)

res <- mean(Y)/(1 - mean(Y))

return(res)

}

odds1 <- collapsibility_function(index=1, intercept = 0, exposure = 1)

odds0 <- collapsibility_function(index=1, intercept = 0, exposure = 0)

or_marg <- odds1/odds0

true marginal OR for intercept = 0

1.871259

library(parallel)

library(boot)

##

Attaching package: 'boot'

The following object is masked from 'package:survival':

##

aml

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 4

expit <- function(a) {

1/(1 + exp(-a))

}

set.seed(123)

collapsibility_function <- function(index, intercept, true_m,

true_c) {

n = 500

C <- rnorm(n, 0, 1)

theta <- c(0, log(2))

pi <- expit(theta[1] + theta[1] * C)

A <- rbinom(n, 1, pi)

beta <- c(intercept, log(2), log(2))

mu <- expit(beta[1] + beta[2] * A + beta[3] * C)

Y <- rbinom(n, 1, mu)

glm.res0 <- mean(Y)

m1 <- glm(Y ~ A + C, family = binomial(link = "logit"))

glm.res1 <- summary(m1)$coefficients[2, 1:2]

muhat1 <- mean(predict(m1, newdata = data.frame(A = 1, C),

type = "response"))

muhat0 <- mean(predict(m1, newdata = data.frame(A = 0, C),

type = "response"))

compute the odds from these average probabilities

odds1 <- muhat1/(1 - muhat1)

odds0 <- muhat0/(1 - muhat0)

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 5

glm.res2 is the marginal log-odds ratio

glm.res2 <- log(odds1/odds0)

bootstrap SEs

c_data <- data.frame(Y, A, C)

boot_func <- function(data, index) {

order matters!

boot_dat <- data[index,]

m1_ <- glm(Y ~ A + C, data = boot_dat, family = binomial(link = "logit"))

glm.res1 <- summary(m1_)$coefficients[2, 1:2]

muhat1_ <- mean(predict(m1_, newdata = transform(boot_dat,

A = 1), type = "response"))

muhat0_ <- mean(predict(m1_, newdata = transform(boot_dat,

A = 0), type = "response"))

compute the odds from these average

probabilities

odds1_ <- muhat1_/(1 - muhat1_)

odds0_ <- muhat0_/(1 - muhat0_)

return(odds1_/odds0_)

}

boot_obj <- boot(data = c_data, statistic = boot_func, R = 200,

parallel = "no") # can only parallelize one level

glm.res2 <- c(glm.res2, sd(boot_obj$t))

res <- data.frame(intercept = intercept, t(glm.res1), t(glm.res2),

true_m = true_m, true_c = true_c)

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 6

return(res)

}

choose the number of cores to use num_cores <-

detectCores() - 2

how many cores? num_cores

special mclapply seed ... RNGkind('L'Ecuyer-CMRG')

set the seed

set.seed(123)

run the function

sim_res <- lapply(1:500, function(x) collapsibility_function(index = x,

intercept = 0, true_m = 1.871259, true_c = 2)) #,

mc.cores = num_cores)

sim_res <- do.call(rbind, sim_res)

After running this simulation function, we have the following data to work

with:

names(sim_res) <- c("intercept", "cEstimate", "cSE", "mEstimate",

"mSE", "true_m", "true_c")

head(sim_res, 3)

intercept cEstimate cSE mEstimate mSE true_m true_c

1 0 0.8148259 0.1961145 0.7332679 0.3889278 1.871259 2

2 0 0.9603903 0.1950268 0.8900275 0.4527568 1.871259 2

3 0 0.6378918 0.1948775 0.5610920 0.3111768 1.871259 2

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 7

tail(sim_res, 3)

intercept cEstimate cSE mEstimate mSE true_m true_c

498 0 0.7207652 0.1927378 0.6486043 0.3303620 1.871259 2

499 0 0.7329280 0.1938252 0.6611271 0.3314619 1.871259 2

500 0 0.5046467 0.1937086 0.4473192 0.2893371 1.871259 2

Let’s use these data to compare the conditionally and marginally adjusted

ORs. We’ll start with bias.

1.1 Bias

Bias is defined as the average (over all Monte Carlo samples) of the difference

between the estimate and the truth for a given sample size:

b̂ = E(θ̂ − θ)

In our setting, the sample size is 500 observations, and the Monte Carlo

sample size is also 500. We can compute the bias in our dataset as follows:

mc_bias <- sim_res %>%

summarize(bias_c = mean(cEstimate - log(true_c)),

bias_m = mean(mEstimate - log(true_m)))

mc_bias

bias_c bias_m

1 0.006667249 0.004482513

Let’s construct a Monte Carlo standard error function that we can use

for each of these bias estimates. We can actually do this with the standard

formulas provided in Morris et al. (2019), Table 6:

mc_se_bias <- function(x, n) {

sqrt(sum((x - mean(x))^2)/(n * (n - 1)))

}

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 8

mc_bias_se <- c(mc_se_bias(sim_res$cEstimate, n = 500), mc_se_bias(sim_res$mEstimate,

n = 500))

mc_bias_se

[1] 0.008776152 0.007963605

If interested, one can construct standard inferential statistics, such as p-

values and confidence intervals for the bias parameter using these estimates

and Monte Carlo standard errors.

1.2 Mean Squared Error

Mean squared error is defined as the average (over all Monte Carlo samples) of

the squared difference between the estimate and the truth for a given sample

size:

m̂se = E(θ̂ − θ)2

We can compute the mean squared error as follows:

mse_c = mean((sim_res$cEstimate - log(sim_res$true_c))^2)

mse_m = mean((sim_res$mEstimate - log(sim_res$true_m))^2)

We can also construct a Monte Carlo standard error function for the MSE

(Morris et al., 2019, Table 6):

mc_se_mse <- function(x, n) {

sqrt(sum(((x - mean(x))^2 - mean((x - mean(x))^2))^2)/(n *

(n - 1)))

}

mc_se_mse(sim_res$cEstimate, n = 500)

[1] 0.002524538

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 9

mc_se_mse(sim_res$mEstimate, n = 500)

[1] 0.002080995

1.3 Bias Standard Error

The dataset we constructed from our Monte Carlo simulation function gave us

the following variables:

head(sim_res, 3)

intercept cEstimate cSE mEstimate mSE true_m true_c

1 0 0.8148259 0.1961145 0.7332679 0.3889278 1.871259 2

2 0 0.9603903 0.1950268 0.8900275 0.4527568 1.871259 2

3 0 0.6378918 0.1948775 0.5610920 0.3111768 1.871259 2

Each point estimate in this dataset has an associated standard error. In

actuality, we can state that the standard error should technically equal the

standard deviation of all the estimates in the Monte Carlo sample. This is

what a standard error estimates. Thus, we can compare the average of all the

standard errors to the standard deviation of all the point estimates:

sd(sim_res$cEstimate) - mean(sim_res$cSE)

[1] 0.001375635

sd(sim_res$mEstimate) - mean(sim_res$mSE)

[1] -0.1699376

sd(sim_res$cEstimate)/mean(sim_res$cSE)

[1] 1.007059

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 10

sd(sim_res$mEstimate)/mean(sim_res$mSE)

[1] 0.5116865

This is telling us that the estimated standard errors for the marginally

adjusted odds ratio is much larger than it should be. However, this is an in-

evitable consequence of the fact that we only used 200 resamples for the

bootstrap. But we did this to avoid waiting too long for these notes to compile.

In practice, we should use no less than 1,000 resamples to get more accurate

standard error estimates from the bootstrap.

1.4 Confidence Interval Coverage and Length

For an unbiased estimator, a confidence interval is defined as an upper and

lower bound that include the true value at the nominal rate (e.g., 95%) under

repeated sampling. The first task to evaluating confidence interval coverage is

to construct confidence intervals in each of our Monte Carlo samples. We can

do this as follows:

sim_res <- sim_res %>% mutate(

cLCL = cEstimate - 1.96*cSE,

cUCL = cEstimate + 1.96*cSE,

mLCL = mEstimate - 1.96*mSE,

mUCL = mEstimate + 1.96*mSE

)

After doing this, we have the following data added to our Monte Carlo data:

head(sim_res, 3)

intercept cEstimate cSE mEstimate mSE true_m true_c cLCL

1 0 0.8148259 0.1961145 0.7332679 0.3889278 1.871259 2 0.4304415

2 0 0.9603903 0.1950268 0.8900275 0.4527568 1.871259 2 0.5781378

3 0 0.6378918 0.1948775 0.5610920 0.3111768 1.871259 2 0.2559318

cUCL mLCL mUCL

1 1.199210 -0.029030503 1.495566

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 11

2 1.342643 0.002624151 1.777431

3 1.019852 -0.048814409 1.170999

With that, we can construct an indicator of whether these confidence inter-

vals include the true values:

sim_res <- sim_res %>% mutate(

cCoverage = cLCL < log(true_c) & log(true_c) < cUCL,

mCoverage = mLCL < log(true_m) & log(true_m) < mUCL

)

mean(sim_res$cCoverage)

[1] 0.94

mean(sim_res$mCoverage)

[1] 0.99

Notice that the marginally adjusted confidence intervals have a greater than

nominal coverage rate. This is likely due to the aforementioned bias in the

standard error estimator (we need to use more bootstrap resamples!). But we

can further explore this using confidence interval length:

sim_res <- sim_res %>% mutate(

cCI_length = cUCL - cLCL,

mCI_length = mUCL - mLCL

)

mean(sim_res$cCI_length)

[1] 0.7638711

mean(sim_res$mCI_length)

[1] 1.364196

And we can see that the confidence interval length is much longer for the

marginally adjusted OR compared to the conditional one.

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 12

1.5 Power

As a final calculation, let’s evaluate the power to detect a non-null hypothesis

with our marginal and conditional effect estimators. We can do this using a

variation of the confidence intervals we’ve constructed, as follows:

sim_res <- sim_res %>% mutate(

cPower = cLCL > 0 | cUCL < 0,

mPower = mLCL > 0 | mUCL < 0

)

mean(sim_res$cPower)

[1] 0.944

mean(sim_res$mPower)

[1] 0.194

This is telling us that, under the conditions of the simulation (single con-

founder, true conditional / marginal effect of ~ 2, etc), using a conditionally

adjusted model gives us a power of 94.4 % to detect an odds ratio of 2. How-

ever, the marginally adjusted approach gives us a much lower power. Again,

this poor performance is largely due to the limited bootstrap resample number.

PERFORMANCE MEASURES: ANALYZING AND INTERPRETING SIMULATION RESULTS 13

References

Tim P. Morris, Ian R. White, and Michael J. Crowther. Using simulation studies

to evaluate statistical methods. Statistics in Medicine, 38(11):2074–2102,

2019.

	Evaluating the Performance of an Estimator

