
Distributions in a Regression Context
Ashley I Naimi

Summer 2024

Contents

1 Regression Models and Distributions for Simulation: Simple Continuous 2

2 Regression Models and Distributions for Simulation: Binary and Continuous 4

2.1 The Balancing Intercept 8

3 Log-Linear and Poisson 13

4 Marginal Standardization 15

5 Inverse Probability Weighting 17

DISTRIBUTIONS IN A REGRESSION CONTEXT 2

Often, we use regression models to analyze data, and so they are typically

implemented in some way in a simulation setting. Here, we’ll explore how to

integrate some of the distribution functions in the last chapter into a regression

modeling framework. We’ll start with some very simple regression modeling

frameworks and work our way up in complexity.

1 Regression Models and Distributions for Simulation: Simple Con-

tinuous

The simplest regression framework we can simulate involves two normally

distributed random variables:

set.seed(123)

n = 5000

x <- rnorm(n, mean = 0, sd = 1)

y <- 5 + 2*x + rnorm(n, mean = 0, sd = 1)

a <- data.frame(x, y)

head(a)

x y

1 -0.56047565 3.384875

2 -0.23017749 5.667238

3 1.55870831 6.970467

4 0.07050839 6.622035

5 0.12928774 6.174767

6 1.71506499 8.765261

We can explore these data using standard methods:

DISTRIBUTIONS IN A REGRESSION CONTEXT 3

GGally::ggpairs(a)

Corr:

0.892***

x y

x
y

−2 0 2 0 5 10

0.0

0.1

0.2

0.3

0.4

0

5

10

summary(a$y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.892 3.527 5.007 4.995 6.460 12.599

summary(a$x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.13739 -0.65514 -0.00757 -0.00057 0.66098 3.44599

Because of how we defined the outcome in the simulation, we can analyze

these data using a few methods. For example, via lm() or glm():

mod1 <- lm(y ~ x, data = a)

mod1 <- glm(y ~ x, data = a, family = gaussian(link = "identity"))

summary(mod1)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.995823 0.01418265 352.249 0

x 1.993971 0.01426149 139.815 0

DISTRIBUTIONS IN A REGRESSION CONTEXT 4

We can see that the coefficients from this model align almost exactly with

the values we used to simulate the outcome variable y.

2 Regression Models and Distributions for Simulation: Binary and

Continuous

How should we simulate a binary random variable from a regression model?

We can use a logistic regression model to do this. We won’t explain all of this

now, but will have an opportunity to look at each of these elements to get a

sense of how this code works and why:

define the inverse logistic function

expit <- function(x){

1/(1 + exp(-x))

}

set.seed(123)

n = 5000

z <- rnorm(n, mean = 0, sd = 1)

x <- rbinom(n, size = 1, p = expit(-1 + log(2)*z))

y <- 100 + 10*x + 3*z + rnorm(n, mean = 0, sd = 10)

use these variables to construct a dataset:

a <- data.frame(z, x, y)

The above code gives us a dataset of 5000 observations with: one continu-

ous covariate z, one binary exposure x, and one continuous outcome y:

head(a)

z x y

DISTRIBUTIONS IN A REGRESSION CONTEXT 5

1 -0.56047565 0 101.81860

2 -0.23017749 0 107.45388

3 1.55870831 0 99.50946

4 0.07050839 0 73.28888

5 0.12928774 0 89.41832

6 1.71506499 1 102.59044

We can do some basic analyses of these data:

ggplot(a) + geom_histogram(aes(x = y))

0

100

200

300

400

500

75 100 125
y

co
un

t

ggplot(a) + geom_histogram(aes(x = z))

0

100

200

300

400

−2 0 2
z

co
un

t

DISTRIBUTIONS IN A REGRESSION CONTEXT 6

table(a$x)

##

0 1

3517 1483

mean(a$x)

[1] 0.2966

Again, we can use a simple regression model to analyze these data, such

as:

mod1 <- lm(y ~ x, data = a)

mod1 <- glm(y ~ x + z, data = a, family = gaussian(link = "identity"))

summary(mod1)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.716726 0.1726271 577.64242 0.000000e+00

x 10.709244 0.3269832 32.75166 2.603927e-213

z 2.604083 0.1501827 17.33944 1.888766e-65

Let’s unpack this model. We can formulate it as a generalized linear model

with a Gaussian distribution and identity link function:

Yi = β0 + β1Xi + β2Zi + ϵi

where ϵi ∼ N (0, σ2)

Notice that this equation corresponds to the following model code:

mod1 <- glm(y ~ x + z, data = a, family = gaussian(link = "identity"))

summary(mod1)

DISTRIBUTIONS IN A REGRESSION CONTEXT 7

Notice also how this aligned with the code we used to simulate the out-

come:

y <- 100 + 10 * x + 3 * z + rnorm(n, mean = 0, sd = 10)

What about the code that we used to simulate the exposure? This is the

propensity score model, and we used logistic regression, defined as:

logitP (X = 1 | Z) = α0 + α1Z

which is equivalent to:

P (X = 1 | Z) = expit{α0 + α1Z}

In our code, the values of α0, α1 were set to -1 and log(2), respectively. Impor-

tantly, the “logit” and “expit” functions are defined as:

logitP (•) = P (•)
1− P (•)

expit(•) = 1

[1 + exp(−•)]

These functions are inversely related, meaning:

P (•) = expit (logitP (•))

We can fit this model using the GLM routines in R. For example, if we

wanted to fit a propensity score model to the a data, we might use the fol-

lowing code:

a$propensity_score <- glm(x ~ z, data = a, family = binomial("logit"))$fitted.values

While this is harder to see, it is aligned with the code we used to simulate

the exposure. Specifically:

x <- rbinom(n, size = 1, p = expit(-1 + log(2)*z))

Note that this code simulates a random variable X from the Bernoulli

distribution (rbinom with size = 1), where p is defined as the inverse of the

DISTRIBUTIONS IN A REGRESSION CONTEXT 8

logit of the regression model. We can write this as:

log
[

P (X = 1 | Z)

1− P (X = 1 | Z)

]
= −1 + log(2)× Z

Or, we can also write this as:

P (X = 1 | Z) =
1

[1 + exp(−[−1 + log(2)× Z])]

This P (X = 1 | Z) is the propensity score. It’s what we used in the p =

argument of the rbinom function, and it’s what we estimated when we fit a

glm regressing our exposure against Z , appended with the $fitted.values

operator.

Deeper Dive: The expit(•) Function

Consider the probabilities we get from the expit function above when we have specific values of Z ,

which is a continuous (Gaussian) random variable with mean = 0 and standard deviation = 1. When Z = 0, we

have:

1

1 + exp(−[−1])
≈ 1

1 + 2.718282
≈ 0.27

In contrast, when Z = −1, we have

1

1 + exp(−[−1 + log(2)×−1])
≈ 1

1 + 0.1839397
≈ 0.15

But if Z = 1, we have:

1

1 + exp(−[−1 + log(2)× 1])
≈ 1

1 + 0.7357589
≈ 0.42

Each of these gets resolved in the rbinom function above, giving us a probability bounded between [0,1] that

also depends on Z.

2.1 The Balancing Intercept

Suppose we were interested in simulating data from the following logistic

regression model for a binary outcome C , a binary exposure X , and a binary

confounder C :

logitP (Y = 1 | X,C) = α0 + α1X + α2C

DISTRIBUTIONS IN A REGRESSION CONTEXT 9

Suppose further that we wanted to explore the impact of changing the

value of α2 (the confounder effect) on our ability to estimate the conditionally

adjusted odds ratio (exp(α1)).

We might construct a simulation that generates data under different param-

eter values for α2. For example, α2 ∈ {log(0.25), log(0.5), log(0.75), log(1.5), log(2), log(3)}.
If we constructed this simulation, keeping everything else except α2 the

same, and found that it was more difficult to estimate α1 at the extreme val-

ues of α2, could we conclude that the only reason was due to varying this

confounding parameter?

The answer is, not really. Why? Because when we change the value of α2,

we also naturally end up changing the marginal (overall) probability of Y . To

see this, we can construct a little simulation example:

define the inverse logistic function

expit <- function(x){

1/(1 + exp(-x))

}

set the seed

set.seed(123)

large sample size

n = 500000

create variable

z <- rnorm(n, mean = 0, sd = 1)

simulate exposure

x <- rbinom(n, size = 1, p = expit(-1 + log(2)*z))

simulate outcome using a range of different parameter values

param_list <- c(.25, .5, .8, 1, 1.5, 2, 2.5, 3)

res <- NULL

for(i in param_list){

DISTRIBUTIONS IN A REGRESSION CONTEXT 10

y0 <- rbinom(n, size = 1,

p = expit(-1 + log(i)*x + log(2)*z))

compute the mean of the outcome under these different parameter values

res <- rbind(res, mean(y0))

}

res

[,1]

[1,] 0.224258

[2,] 0.249944

[3,] 0.275778

[4,] 0.287458

[5,] 0.313316

[6,] 0.331480

[7,] 0.346446

[8,] 0.357740

So in a setting similar to this one, how can we tell if the degrading perfor-

mance of an estimator is due to stronger confounding (coded in the param_list

object), or to varying prevalence of the outcome (as captured by the res ob-

ject)?

This is where the balancing intercept becomes useful (Rudolph et al., 2021).

The basic idea behind the balancing intercept is to balance the impact of a

parameter in a model with a special kind of intercept that allows us to hold the

probability of the outcome fixed at a value of our choosing.

The specific way in which we do this is to replace a standard intercept

(usually a number of our choosing, in the above outcome model this value is -1)

with an expanded intercept that has different components to it. Generically, the

balancing intercept typically looks like this:

− log(1/µ− 1)− log(α) ∗ E(X)

This intercept has two parts.

DISTRIBUTIONS IN A REGRESSION CONTEXT 11

The first allows us to set the desired magnitude of the outcome prevalence:

− log(1/µ− 1)

The second part allows us to offset the impact of any covariates in the

model on the outcome prevalence.

To see this in action, let’s revisit our simple simulation:

define the inverse logistic function

expit <- function(x){

1/(1 + exp(-x))

}

set.seed(123)

n = 500000

z <- rnorm(n, mean = 0, sd = 1)

x <- rbinom(n, size = 1, p = expit(-1 + log(2)*z))

param_list <- c(.25, .5, .8, 1, 1.5, 2, 2.5, 3)

res <- NULL

for(i in param_list){

set the marginal outcome probability to 0.25

y25 <- rbinom(n, size = 1,

p = expit(-log(1/.25 - 1) - log(i)*mean(x) - log(2)*0

+ log(i)*x + log(2)*z))

set the marginal outcome probability to 0.5

y5 <- rbinom(n, size = 1,

p = expit(-log(1/.5 - 1) - log(i)*mean(x) - log(2)*0

+ log(i)*x + log(2)*z))

set the marginal outcome probability to 0.75

y75 <- rbinom(n, size = 1,

DISTRIBUTIONS IN A REGRESSION CONTEXT 12

p = expit(-log(1/.75 - 1) - log(i)*mean(x) - log(2)*0

+ log(i)*x + log(2)*z))

no control of the outcome probability

y0 <- rbinom(n, size = 1,

p = expit(-1 + log(i)*x + log(2)*z))

res <- rbind(res,

cbind(mean(y25),

mean(y5),

mean(y75),

mean(y0)))

}

res

[,1] [,2] [,3] [,4]

[1,] 0.275088 0.501214 0.724752 0.224252

[2,] 0.268972 0.499452 0.730590 0.250594

[3,] 0.268556 0.500750 0.731766 0.275482

[4,] 0.269918 0.499560 0.730516 0.287148

[5,] 0.272252 0.499564 0.726488 0.313954

[6,] 0.276508 0.499212 0.721918 0.331800

[7,] 0.280138 0.497270 0.717748 0.346960

[8,] 0.282182 0.496582 0.713302 0.359108

One thing that’s important to aknowledge here is that this balancing inter-

cept is not exact, but is approximate.

This approximation results from the fact that, when we offset the effect of a

covariate, we use the mean of the covariate to remove this effect. For example,

in the code above, we use - log(i)*mean(x) to remove the impact of the

binary X variable.

A second source of the approximation is how we handle continuous vari-

ables, such as z in the code above. We’re again setting this to the mean of the

random variable (in this case zero, included only to be explicit). If we wanted to

be exact, we would have to integrate over the density of continuous variables.

DISTRIBUTIONS IN A REGRESSION CONTEXT 13

3 Log-Linear and Poisson

We can also simulate from a log-linear model where the outcome is distributed

following a Poisson distribution. In this case, we could define a log-linear

Poisson regression model as:

logE(Y | X) = β0 + β1X

where Y | X ∼ Pois(λ), and where λ = exp(β0 + β1X). In R, this could

look like:

set.seed(123)

n = 5000

z <- rnorm(n, mean = 0, sd = 1)

x <- rbinom(n, size = 1, p = expit(-1 + log(2)*z))

y <- rpois(n, lambda = exp(2 + log(2)*x + log(1.5)*z))

use these variables to construct a dataset:

b <- data.frame(z, x, y)

head(b)

z x y

1 -0.56047565 0 7

2 -0.23017749 0 3

3 1.55870831 0 16

4 0.07050839 0 6

5 0.12928774 0 8

6 1.71506499 1 36

We can explore distributions in this dataset, as we would typically:

DISTRIBUTIONS IN A REGRESSION CONTEXT 14

GGally::ggpairs(b)

Corr:

0.293***

Corr:

0.708***

Corr:

0.675***

z x y

z
x

y

−2 0 2 0.000.250.500.751.000 20 40 60

0.0
0.1
0.2
0.3
0.4

0.00
0.25
0.50
0.75
1.00

0
20
40
60

We could more closely inspect the distribution of the outcome, which fol-

lows a Poisson distribution:

ggplot(b) +

geom_histogram(aes(x = y)) +

scale_x_continuous(expand = c(0,0)) +

scale_y_continuous(expand = c(0,0))

0

300

600

900

0 20 40 60
y

co
un

t

We can then fit a regression model to these simulated data, as follows:

DISTRIBUTIONS IN A REGRESSION CONTEXT 15

mod1 <- glm(y ~ x + z, data = b, family = poisson(link = "log"))

summary(mod1)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.998889 0.006266520 318.97913 0

x 0.689279 0.009057425 76.10099 0

z 0.411776 0.004528943 90.92100 0

Again, this model demonstrates that we can recover the true values, which

we used to simulate these data.

4 Marginal Standardization

Marginal standardization is equivalent to g computation (aka the parametric

g formula) when the exposure is measured at a single time point (Naimi et al.,

2017). This process can be implemented by fitting a single regression model,

regressing the outcome against the exposure and all confounding variables.

But instead of reading the coefficients the model, one can obtain parameter

estimates of interest by using this model to generate predicted risks for each

individual under “exposed” and “unexposed” scenarios in the dataset. To

obtain standard errors, the entire procedure must be bootstrapped.

Here is some code to implement this marginal standardization in the above

dataset:

library(boot)

#' Regress the outcome against the exposure and covariate

ms_model <- glm(y ~ x + z, data = a, family = gaussian(link = "identity"))

##' Generate predictions for everyone in the sample to obtain

##' unexposed (mu0 predictions) and exposed (mu1 predictions) risks.

mu1 <- predict(ms_model, newdata = transform(a, x=1), type="response")

mu0 <- predict(ms_model, newdata = transform(a, x=0), type="response")

DISTRIBUTIONS IN A REGRESSION CONTEXT 16

#' Mean difference in predicted outcomes

marg_stand_MD <- mean(mu1) - mean(mu0)

#' Using the bootstrap to obtain confidence intervals for the marginally adjusted

#' mean difference.

bootfunc <- function(data,index){

boot_dat <- data[index,]

ms_model <- glm(y ~ x + z, data=boot_dat, family = gaussian(link = "identity"))

mu1 <- predict(ms_model, newdata = transform(boot_dat,x=1), type="response")

mu0 <- predict(ms_model, newdata = transform(boot_dat,x=0), type="response")

marg_stand_MD_ <- mean(mu1) - mean(mu0)

return(marg_stand_MD_)

}

#' Run the boot function. Set a seed to obtain reproducibility

set.seed(123)

boot_res <- boot(a, bootfunc, R=2000)

boot_MD <- boot.ci(boot_res, type = "norm")

marg_stand_MD

[1] 10.70924

boot_MD

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 2000 bootstrap replicates

##

CALL :

boot.ci(boot.out = boot_res, type = "norm")

##

Intervals :

DISTRIBUTIONS IN A REGRESSION CONTEXT 17

Level Normal

95% (10.07, 11.36)

Calculations and Intervals on Original Scale

5 Inverse Probability Weighting

We can also estimate the exposure-outcome association using inverse prob-

ability weighting. Inverse probability weighting is the commonly employed

propensity score adjustment technique. The simple heuristic often used to

describe the way IP-weighting works is that, when applied to data, they yield

a “pseudo population” where there is no longer an association between the

covariate (i.e., confounder) on the exposure.

The weights for each individual needed to create this pseudo-population are

defined as the inverse of the probability of receiving their observed exposure.

However, simply taking the inverse of the probability of the observed expo-

sure, while valid, is not the usual strategy for implementing inverse probability

weights. In practice, one will often use stabilized weights, stabilized normal-

ized weights, potentially with some degree of “truncation” or, more accurately,

trimming of the weights.1 1 In contrast to our emphasis of the usage
of the word “truncation” which refers to the
removal of observations from the dataset,
researchers will often refer to “truncating”
the weights, which sets the largest value
to be equal to the 99th or 95th percentile
values. This is more accurately referred to as
“trimming” the weights, since no truncation is
occurring.

The simplest type of weight used in practice is the stabilized inverse proba-

bility weight. These are often defined as:

sw =


P (X = 1)

P (X = 1 | Z)
if X = 1

P (X = 0)

P (X = 0 | Z)
if X = 0

Let’s use the simulated data again to construct the stabilized weights and

apply them to estimate the mean difference. We start by fitting a propensity

score model to construct our weights:

create the propensity score in the dataset

a$propensity_score <- glm(x ~ z, data = a, family = binomial("logit"))$fitted.values

stabilized inverse probability weights

a$sw <- (mean(a$x)/a$propensity_score)*a$x +

((1-mean(a$x))/(1-a$propensity_score))*(1-a$x)

DISTRIBUTIONS IN A REGRESSION CONTEXT 18

summary(a$sw)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3638 0.8246 0.9308 1.0002 1.0914 5.3677

head(a)

z x y propensity_score sw

1 -0.56047565 0 101.81860 0.2054964 0.8853327

2 -0.23017749 0 107.45388 0.2463131 0.9332788

3 1.55870831 0 99.50946 0.5370583 1.5194138

4 0.07050839 0 73.28888 0.2879360 0.9878326

5 0.12928774 0 89.41832 0.2965456 0.9999226

6 1.71506499 1 102.59044 0.5644486 0.5254686

As we can see from the output above, the stabilized weights are, in fact,

well behaved, with a mean of one and a max value that is small relative to the

overall sample size.

mod_MD_weighted <- glm(y ~ x, data = a, weights=sw, family = gaussian("identity"))

summary(mod_MD_weighted)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.73286 0.1754109 568.56702 0.000000e+00

x 10.72026 0.3223223 33.25944 2.693767e-219

To get appropriate standard errors for this model, there are a few options

we can use. Importantly, the model-based standard errors are no longer valid

when weighting is used. One must instead use the robust (sandwich) variance

estimators, or the bootstrap.

For example, the robust variance approach could be deployed using the

lmtest and sandwich packages:

DISTRIBUTIONS IN A REGRESSION CONTEXT 19

library(lmtest)

library(sandwich)

coeftest(mod_MD_weighted,

vcov. = vcovHC(mod_MD_weighted, type = "HC3"))[2,]

Estimate Std. Error z value Pr(>|z|)

1.072026e+01 3.545264e-01 3.023825e+01 7.447026e-201

coefci(mod_MD_weighted,

level = 0.95,

vcov. = vcovHC(mod_MD_weighted, type = "HC3"))[2,]

2.5 % 97.5 %

10.02540 11.41512

One can then construct CIs in the standard way using the estimated stan-

dard error in the output above, or using the coefci function in the lmtest

package. Alternatively, we can use the boostrap to get standard errors for IP

weighted models. The key to the bootstrap here (as in all cases) is to capture

all models within the bootstrap function. In the IP weighting case, this includes

the propensity score model and the weighted regression model:

#' Using the bootstrap to obtain confidence intervals for the IP weighted

#' mean difference.

bootfunc <- function(data,index){

boot_dat <- data[index,]

boot_dat$propensity_score <- glm(x ~ z, data = boot_dat, family = binomial("logit"))$fitted.values

stabilized inverse probability weights

boot_dat$sw <- (mean(boot_dat$x)/boot_dat$propensity_score)*boot_dat$x +

((1-mean(boot_dat$x))/(1-boot_dat$propensity_score))*(1-boot_dat$x)

DISTRIBUTIONS IN A REGRESSION CONTEXT 20

mod_MD_weighted_ <- glm(y ~ x, data = boot_dat, weights=sw, family = gaussian("identity"))

res <- summary(mod_MD_weighted_)$coefficients[2,1]

return(res)

}

#' Run the boot function. Set a seed to obtain reproducibility

set.seed(123)

boot_res <- boot(a, bootfunc, R = 2000)

boot_IP_weight <- boot.ci(boot_res, type = "norm")

summary(mod_MD_weighted)$coefficients[2,1]

[1] 10.72026

boot_IP_weight

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 2000 bootstrap replicates

##

CALL :

boot.ci(boot.out = boot_res, type = "norm")

##

Intervals :

Level Normal

95% (10.05, 11.40)

Calculations and Intervals on Original Scale

Here’s a table comparing the results we’ve obtained so far:
Estimate LCL UCL

marg_stand_res 10.70924 10.07334 11.35882

ip_weighted_res 10.72026 10.02540 11.41512

ip_weighted_boot 10.72026 10.04892 11.39527

DISTRIBUTIONS IN A REGRESSION CONTEXT 21

References

Ashley I Naimi, Stephen R Cole, and Edward H Kennedy. An Introduction to G

Methods. Int J Epidemiol, 46(2):756–62, 2017.

Jacqueline E Rudolph, Jessie K Edwards, Ashley I Naimi, and Daniel J Westre-

ich. Simulation in practice: The balancing intercept. Am J Epidemiol, 190(8):

1696–1698, 2021.

	Regression Models and Distributions for Simulation: Simple Continuous
	Regression Models and Distributions for Simulation: Binary and Continuous
	Log-Linear and Poisson
	Marginal Standardization
	Inverse Probability Weighting

