Presenting Results: Visualizing Simulation Outcomes
Ashley | Naimi
Spring 2024

Contents

1 Visualizing Simulation Outcomes 2
2 Nested Loop Plot 2
3 Zipper Plots 7

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES

1 Visualizing Simulation Outcomes

Once a simulation study is complete, the outcome of the study often consists
of several datasets that contain information on the performance of the meth-
ods being studied. These datasets must then be processed in order to present
the findings from the study.

Several different forms of presentation can be used, including tables and
figures. Besides the common repertoire of figures that can be used to present
results (histograms, density plots, scatter plots, heat maps and other), there
are a few types of figures that can be tailored to a simulation study, and that
can potentially reveal useful information about the performance of a set of
methods under a particular set of circumstances.

Here, we will briefly introduce nested loop plots, and zipper (or “zip”)" plots,
and demonstrate how they can be used to convey results from a simulation

study.

2 Nested Loop Plot

Nested loop plots can be used to represent the results of a simulation study
over all possible cross-combination of parameters used to define the simula-
tion data.2

Suppose we conduct a simulation study evaluating the performance of three
different methods under a range of difference scenarios. Suppose further that

from our simulation code, we obtain a dataset with the following information:

pacman: :p_load(
tidyverse,
dplyr,
purr,
magrittr

)

thm <- theme_classic() +
theme (

legend.position = "top",

' Sometimes zipper plots are referred to as
zip plots (e.g., Morris et al., 2019). However,
searching the term “zip plot” online will yield
many plot structures tailored to plotting
geographical regions using zip codes.

2 this section was based heavily on a very
useful site by Michael Kammer: https:
//bit.1ly/4bm77eP \ Thanks to an Emory
Epi PhD student, Qi Zhang, for bringing this to
my attention.

https://bit.ly/4bm77eP
https://bit.ly/4bm77eP

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES 3

legend.background = element_rect(fill = "transparent", colour = NA),
legend.key = element_rect(fill = "transparent", colour = NA)
)
theme_set (thm)

set.seed(123)

params = list(
samplesize = c(100, 200, 500),
paraml = c(1, 2),

param2 = c(1, 2, 3),

param3 = c(1, 2, 3, 4)

design = expand.grid(params)

add some "results"

design %<>Y

mutate (method1 rnorm(n = n(Q),
mean = paraml * (param2 * param3 + 1000 / samplesize),

sd = 2),

method2 = rnorm(n = n(),
mean = paraml * (param2 + param3 + 2000 / samplesize),

sd = 2),

method3 rnorm(n = n(Q),
mean = paraml * (param2 + param3 + 3000 / samplesize),

sd = 2))

knitr: :kable(head(design, n = 10))

PRESENTING RESULTS

: VISUALIZING SIMULATION OUTCOMES 4

samplesize | param1 | param2 | param3 method1 method?2 method3
100 1 1 1] 9.879049 | 24.011477 | 28.796928
200 1 1 1| 5.539645 | 10.581599 | 15.938187
500 1 1 1 6.117417 | 4.623983 | 5.076489
100 2 1 1] 22.141017 | 46.051143 | 65.375833
200 2 1 1| 12.258575 | 23.430454 | 38.200218
500 2 1 1] 9.430130 | 9.558565 | 13.425939
100 1 2 1] 12.921832 | 23.362607 | 34.575478
200 1 2 1| 4.469877 | 12.722217 | 19.538085
500 1 2 1] 2.626294 7.011528 9.664405
100 2 2 1] 23.108676 | 46.770561 | 63.983247

We can use a nested loop plot to present these results in a single image.

To deploy a nested loop plot, we first need to install the relevant package. This

package is a development package hosted on GitHub, so we'll need to use the

remotes Or devtools packages to install it:

remotes: :install_github("matherealize/looplot")

We can then proceed to use the nested_loop_plot function, which relies

on ggplot?2 functionality. With the dataset above, we can construct a plot

using the following code:

pacman: :p_load(looplot)

p = nested_loop_plot(resdf = design,

x = "samplesize", steps

grid_rows = "paraml",

steps_y_base =

X_name = "Sample Size",

spu_x_shift =

200,

c("param2", "param3"),

-10, steps_y_height = 3, steps_y_shift = 10,

y_name = "Error",

steps_values_annotate = TRUE, steps_annotation_size = 3,

hline_intercept =

y_expand_add = c(10, NULL),

0,

post_processing = list(

add_custom_theme = list(

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES

axis.text.x = element_text(angle = -90,
vjust = 0.5,

size = 8)

)

ggsave (here("_images", "nested_loop_plot.pdf"), width = 8, height = 6)

Here is what the figure we generated looks like:

Figure 1: Example Nested Loop Plot of
Hypothetical Simulation Results.
60+
40+
\ \ E
] k;w \\\ \\~ \\\ {>> §>= §:§ l\s *\ k:: ;
H N :
O EETT . \\" . \\' . \\' ... \
Method
§ —— methodl
m —=— method2
method3
60
40+
N :
207 \ \ \\ \ %
N
0 e

863
00S
883
005§
882
005
883
005§
883
006G =
D o31-
T 00S
863
00s
963
00S
882-
00S
863
00S
883
005
8822
005

©
@
N
o

This Figure shows the magnitude of the simulated error for each sam-

ple size split by the two distinct param1 values, across all combinations of
param?2 and param3.

There are many different ways to formulate a plot like this. For example, we
can remove the separate across parami

pacman: :p_load(looplot)

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES

p = nested_loop_plot(resdf = design,

X = "samplesize", steps = c("paraml", "param2", ”paramB"),
#grid_rows = "paraml",

steps_y_base = -10, steps_y_height = 3, steps_y_shift = 10,
x_name = "Sample Size", y_name = "Error",

spu_x_shift = 200,

steps_values_annotate = TRUE, steps_annotation_size = 3,
hline_intercept = 0,

y_expand_add = c(10, NULL),

post_processing = list(

add_custom_theme = list(

axis.text.x = element_text(angle = -90,
vjust = 0.5,
size = 8)

))

ggsave (here("_images", "nested_loop_plot2.pdf"), width = 10, height = 6)

Which gives us a single panel figure:

60

404

20

Error

”&\QL& k\& \ KQK L - o

method3

6

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES 7

We can add separate grids for each parameter as well. For a range of dif-
ferent options of the nested loop plot, refer to the package demo: https:
//bit.ly/4bm77eP.

3 Zipper Plots

Zipper plots are most often used to present bounds, such as confidence in-
tervals. Consider data from the rsimsum package on the performance of

different methods to estimate a hazard ratio when the baseline hazard is mis-

specified:

dataset n baseline theta se model
1 1 50 Exponential -0.88006151 0.3330172 Cox
2 2 50 Exponential -0.81460242 0.3253010 Cox
3 3 50 Exponential -0.14262887 0.3050516 Cox
4 4 50 Exponential -0.33251820 0.3144033 Cox
5 5 50 Exponential -0.48269940 0.3064726 Cox
6 6 50 Exponential -0.03160756 0.3097203 Cox

[1] 1200 6

##
50 250
600 600

##
Exponential Weibull
#i# 600 600

##
Cox Exp RP(2)
400 400 400

The survival outcomes in each dataset were simulated from a binary treat-
ment variable with a log-hazard ratio of -0.50, under sample sizes of 50 and
250 individuals, and under two different baseline hazard functions (exponential
and Weibull). We can also see that for each combination of simulation param-
eters (sample size, baseline hazard, and model), the Monte Carlo sample size

was 100:

https://bit.ly/4bm77eP
https://bit.ly/4bm77eP

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES 8

relhaz %>
group_by(n, baseline, model) 7>%

count ()

A tibble: 12 x 4

Groups: n, baseline, model [12]

#i# n baseline model nn
<dbl> <chr> <chr> <int>
1 50 Exponential Cox 100
2 50 Exponential Exp 100
3 50 Exponential RP(2) 100
4 50 Weibull Cox 100
5 50 Weibull Exp 100
6 50 Weibull RP(2) 100
7 250 Exponential Cox 100
8 250 Exponential Exp 100
9 250 Exponential RP(2) 100
10 250 Weibull Cox 100
11 250 Weibull Exp 100
12 250 Weibull RP(2) 100

Each of the 100 simulated datasets was then analyzed using a Cox propor-
tional hazards regression model, a parametric exponential model, and a flexible
parametric model developed by Patric Royston and Mahesh Parmar, where the
baseline hazard is fit with natural cubic splines with two degrees of freedom
(Royston and Parmar, 2002).3 3 Additional details on this dataset are
Suppose we're interested in exploring the performance of the normal- avallable here: bttps: //bit - 1y/SK6zpOr
interval (or Wald) confidence interval estimator in these data. We can con-
struct upper and lower confidence interval bounds in the data above using the

standard equation:

(LCL,UCL) = 6 + 1.96 x SE(f)

In R, we could implement this as follows:

https://bit.ly/3K6zpOr

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES 9

relhaz <- relhaz %>%

mutate(lcl = theta - 1.96%*se,

ucl = theta + 1.96%*se)

head(relhaz)

dataset n baseline theta se model 1cl ucl
1 1 50 Exponential -0.88006151 0.3330172 Cox -1.5327752 -0.2273478
2 2 50 Exponential -0.81460242 0.3253010 Cox -1.4521923 -0.1770125
3 3 50 Exponential -0.14262887 0.3050516 Cox -0.7405299 0.4552722
4 4 50 Exponential -0.33251820 0.3144033 Cox -0.9487487 0.2837123
5 5 50 Exponential -0.48269940 0.3064726 Cox -1.0833857 0.1179869
6 6 50 Exponential -0.03160756 0.3097203 Cox -0.6386593 0.5754442

We can also add an indicator of whether the bounds just created include the

true value of -0.5 or not:

relhaz <- relhaz %>/

mutate(include_flag = if_else(lcl<-.5 & ucl>-.5, "Include", "Exclude"))

With these upper and lower bounds, we can now create a zipper plot for a

subset of these results:

p <- relhaz %>

filter(n == 50, baseline == "Exponential") %>%
ggplot(.) +
geom_hline(yintercept = -.5, 1ty = 2) +

geom_pointrange(aes(x = dataset,
y = theta,
ymin = lcl,
ymax = ucl, color = include_flag),
size = .2,
alpha = .75) +
scale_color_manual (values=c("red","grey")) +

ylab("log Hazard Ratio") +

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES 10

xlab("Sample Number") +
coord_flip() +
theme (legend.position = "none", text=element_text(size=12)) +

facet_wrap(~model)

ggsave (here("_images", "zip_plot_versionl.pdf"), p)

This plot reveals the distribution of confidence intervals across all 100

iterations:
Figure 2: Zipper plot displaying the distri-
Cox Exp RP(2) bution of normal-interval (Wald) confidence
1001 ! ! ! intervals in the relhaz data.

E I 1]
@ 07 ; ; ;
Q 1 1]
£ 251 ! :
(9p] i i i

O T 1 1 1

2 -1 0 1-2 -1 0 1-2 -1 0 1
log Hazard Ratio

Some authors like to present these zipper plots with the bounds ranked
according to some criterion. For confidence intervals, we can rank our results
according to the magnitude of the Wald test statistic for, say, a null test hy-

pothesis:

relhaz <- relhaz %>/

mutate(test_statistic = abs(theta/se))
We can then incorporate an arrange argument into our plot code:

p <- relhaz %>%
filter(n == 50, baseline == "Exponential") %>%
gegplot(.) +
geom_hline(yintercept = -.5, 1ty = 2) +

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES 11

geom_pointrange(aes(x = test_statistic,
y = theta,
ymin = 1lcl,
ymax = ucl, color = include_flag),
size = .2,
alpha = .75) +
scale_color_manual(values=c("red","grey")) +
ylab("log Hazard Ratio") +
xlab("Wald Null Test Statistic") +
coord_flip() +
theme (legend.position = "none", text=element_text(size=12)) +

facet_wrap(~model)
ggsave(here("_images", "zip_plot_version2.pdf"), p)

Which gives us the following modified figure:

Figure 3: Zipper plot displaying the distri-
| bution of normal-interval (Wald) confidence
—_—— intervals in the relhaz data. Bounds are
ranked according to the magnitude of the
Wald test statistic for each point estimate.

Wald Null Test Statistic
N

2 -1 0 1-2 -1 0 1-2 -1 0 1
log Hazard Ratio

Alternative rankings for the y-axis can be considered, such as the magnitude

of the standard error, or the centile rank of the test statistic.

PRESENTING RESULTS: VISUALIZING SIMULATION OUTCOMES

References

Tim P. Morris, lan R. White, and Michael J. Crowther. Using simulation studies
to evaluate statistical methods. Statistics in Medicine, 38(11):2074-2102,
2019.

Patrick Royston and Mahesh K. B. Parmar. Flexible parametric proportional-
hazards and proportional-odds models for censored survival data, with
application to prognostic modelling and estimation of treatment effects.
Statistics in Medicine, 21(15):2175-2197, 2002.

12

	Visualizing Simulation Outcomes
	Nested Loop Plot
	Zipper Plots

