
Key Distributions in R
Ashley I Naimi

Summer 2024

Contents

1 Distribution Functions in R 2

1.1 Gaussian (or Normal) Distribution 3

1.2 Multivariate Normal Distribution 4

1.3 Uniform Distribution 8

1.4 Binomial Distribution 8

1.5 Multinomial Distribution 9

1.6 Poisson Distribution 11

KEY DISTRIBUTIONS IN R 2

1 Distribution Functions in R

Base R comes with a wide variety of pseudo-random number generators that

we can use to simulate from a wide variety of probability distributions, includ-

ing the Gaussian, uniform, binomial, Poisson, and other distributions. Addition-

ally, there are several packages written that can be used to simulate from other

common and less common distributions, including the multivariate Normal,

double-exponential, Gumbel, and others. Generally, functions written in R to

generate data from a distribution follow a particular convention. For example,

generating from a normal distribution, we have the following functions in base

R:

• rnorm: generate Normal random variable

• dnorm: evaluate the Normal probability density (with a given mean/SD) at

specific points

• pnorm: evaluate the cumulative distribution function for a Normal distribu-

tion

• qnorm: evaluate the inverse of the cumulative distribution function for a

Normal distribution

Generally, functions that start with an “r” generate random variables. Func-

tions that start with a “d” generate density values for a specific value of the

random variable. Functions that start with a “p” and a “q” evaluate the cu-

mulative distribution function, and the inverse of the cumulative distribution

(quantile) function, respectively.

Prefix Function

d density

r random variable generation

p cumulative distribution

q inverse cumulative distribution (quantile)

Mostly, to conduct simulation studies, we’ll rely on the “r” functions, which

will allow us to generate random variables. Next we’ll look at specific functions

that generate random variables in R and explore their use for simulation.

KEY DISTRIBUTIONS IN R 3

1.1 Gaussian (or Normal) Distribution

We can simulate data from a Normal distribution using the rnorm function in

R. This function can be deployed as:
0

100

200

300

400

−2 0 2
rnorm(n = 5000)

co
un

t

Figure 1: Histogram for Univariate Normal
Distribution with Mean = 0 and Standard Devi-
ation = 1 for 5000 Simulated Observations.

set.seed(123)

n <- 5

y <- rnorm(n, mean = 0, sd = 1)

y

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774

The univariate Normal distribution is fully defined by its mean and standard

deviation. The default values for these in R are 0 and 1, respectively.

In a regression context, the mean of a Normally distributed random vari-

able is often what is made conditional on other variables. For example, in a

simple setting, we might have a Normally distributed outcome Y with a mean

conditional on X . This can be accomplished in R in two ways1: 1 Note the use of three set.seed() func-
tions in this code chunk. This is not advis-
able, but I’m doing it here to demonstrate an
equivalence between two ways of generating
a Y variable conditional on X .

n <- 5

set.seed(123)

x <- rnorm(n)

set.seed(123)

y_version1 <- rnorm(n, mean = 1 + 2 * x, sd = 1)

set.seed(123)

y_version2 <- 1 + 2 * x + rnorm(n, mean = 0, sd = 1)

y_version1

[1] -0.6814269 0.3094675 5.6761249 1.2115252 1.3878632

KEY DISTRIBUTIONS IN R 4

y_version2

[1] -0.6814269 0.3094675 5.6761249 1.2115252 1.3878632

1.2 Multivariate Normal Distribution −2

0

2

−2 0 2
x

y

Figure 2: ,
and Standard Deviation = [1,1], and covari-

ance [.5, .5] for 5000 Simulated Observa-
tions]Contour Plot for Multivariate Normal
Distribution with Mean = [0,0], and Standard
Deviation = [1,1], and covariance [.5, .5] for
5000 Simulated Observations.

It is sometimes useful to generate data from a multivariate Normal distribu-

tion. For example, if you are trying to simulate a large number of independent

covariates (e.g., confounders or predictors) that will be included in a regression

model, rather than copy and paste code for the univariate Normal distribution

multiple times, you can use code for generating a multivariate Normal vector,

and make the covariance between them zero.

Alternatively, if you are interested in exploring the impact of non-zero covari-

ance between a set of covariates on the performance of an estimator, you can

use multivariate Normal functions to do so.

There are two packages in R that can be used to generate multivariate

Normal data: the MASS package and the mvtnorm package. Here’s how to use

the functions in MASS:

n <- 5

set.seed(123)

create variance - covariance matrix:

sigma <- matrix(0, nrow = 3, ncol = 3)

diag(sigma) <- 1

sigma

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

KEY DISTRIBUTIONS IN R 5

create mean vector:

mu <- rep(1, 3)

mu

[1] 1 1 1

simulate variables

c <- MASS::mvrnorm(n, mu = mu, Sigma = sigma)

c

[,1] [,2] [,3]

[1,] 2.2240818 2.7150650 0.4395244

[2,] 1.3598138 1.4609162 0.7698225

[3,] 1.4007715 -0.2650612 2.5587083

[4,] 1.1106827 0.3131471 1.0705084

[5,] 0.4441589 0.5543380 1.1292877

Here’s how to do the same thing in mvtnorm:

n <- 5

set.seed(123)

create variance - covariance matrix:

sigma <- matrix(0, nrow = 3, ncol = 3)

diag(sigma) <- 1

sigma

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

KEY DISTRIBUTIONS IN R 6

create mean vector:

mu <- rep(1, 3)

mu

[1] 1 1 1

simulate variables

c <- mvtnorm::rmvnorm(n, mean = mu, sigma = sigma)

c

[,1] [,2] [,3]

[1,] 0.4395244 0.7698225 2.5587083

[2,] 1.0705084 1.1292877 2.7150650

[3,] 1.4609162 -0.2650612 0.3131471

[4,] 0.5543380 2.2240818 1.3598138

[5,] 1.4007715 1.1106827 0.4441589

Note the flexibility that can be introduced into these function calls. You can

specify different means for each column, different standard deviations for each

column, as well as different variance-covariance relations between columns, all

depending on the nature of the question you are interested in answering.

KEY DISTRIBUTIONS IN R 7

Technical Note:

Recently in our work, we have been exploring the impact of increasing or decreasing the number of

variables in a regression model on the performance of a range of estimators. To do this, we are using the

mvtnorm package, with code that looks like this:

1 n = 5

2

3 p <- c_number <- 3

4

5 ## confounder matrix

6 sigma <- matrix(0,nrow=p,ncol=p)

7 diag(sigma) <- 1

8 c <- mvtnorm::rmvnorm(n, mean=rep(0,p), sigma=sigma)

9

10 # DESIGN MATRIX FOR THE OUTCOME MODEL

11 muMatT <- model.matrix(

12 as.formula(

13 paste("~(",

14 paste("c[,",1:ncol(c),"]", collapse="+"),

15 ")"

16)

17)

18)[,-1]

19

20 parmsC <- rep(1.5,c_number)

21

22 y <- 10 + muMatT%*%parmsC + rnorm(n)

23

24 data.frame(y,c)

y X1 X2 X3

1 10.903684 1.7869131 0.4978505 -1.9666172

2 8.446040 0.7013559 -0.4727914 -1.0678237

3 7.935820 -0.2179749 -1.0260044 -0.7288912

4 8.667215 -0.6250393 -1.6866933 0.8377870

5 11.225158 0.1533731 -1.1381369 1.2538149

By changing the c_number value, you can automatically increase or decrease the number of covariates in-

cluded in the model for Y .

KEY DISTRIBUTIONS IN R 8

1.3 Uniform Distribution

0

50

100

150

0.00 0.25 0.50 0.75 1.00
runif(n = 5000)

co
un

t

Figure 3: Histogram for the Uniform Dis-
tribution with Upper and Lower Bounds of
0 and 1, respectively for 5000 Simulated
Observations.

The uniform distribution is fully defined by its upper and lower bounds. The

default values for these in R are 0 and 1, respectively.

This distribution can be useful in a number of ways. In principle, this distri-

bution can be made conditional on other variables by specifying the bounds of

the distribution as a function of some other variable. However, this is not often

seen in practice. One can generate a uniform random variable in R using the

following code:

set.seed(123)

n <- 5

y <- runif(n, min = 0, max = 1)

y

[1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673

This distribution is central to the inverse transformation method, which is

a generic technique used to simulate data from arbitrary distributions. We will

see this method shortly.

1.4 Binomial Distribution

0

1000

2000

3000

0.0 0.5 1.0
rbinom(n = 5000, size = 1, p = 0.25)

co
un

t

Figure 4: Barplot for the Binomial (Bernoulli)
Distribution with p = 0.25 for 5000 Simulated
Observations.

The binomial distribution is defined by two parameters: the probability of a

success in a given “trial” and the number of trial conducted. When the number

of “trials” is one, the binomial distribution is equivalent to the Bernoulli distri-

bution, which generates a [0, 1] indicator of whether an event occurred or not.

In settings where logistic regression is used, the dependent variable is usually

from a Bernoulli distribution with a probability depending on variables that will

be included in the model. There are no default values for probability of success

and the trial size, so these must be specified as follows.

KEY DISTRIBUTIONS IN R 9

set.seed(123)

n <- 5

y <- rbinom(n, size = 1, p = 0.5)

y

[1] 0 1 0 1 1

Note what happens when we increase the size of the trial to, say, 8:

set.seed(123)

n <- 5

y <- rbinom(n, size = 8, p = 0.5)

y

[1] 3 5 4 6 6

Each instance of the simulated y becomes a sum of all of the successes

(one’s) encountered over the eight trials.

1.5 Multinomial Distribution

0

1000

2000

3000

1.0 1.5 2.0 2.5 3.0
mn_vars

co
un

t

Figure 5: Barplot for the Multinomial Distribu-
tion with Three Levels and p = 0.2, 0.1, 0.7 for
5000 Simulated Observations.

The multinomial distribution is a generalization of the binomial distribution

that can be used to generate categorical variables where the probability of

each level is governed by a (possibly) unique probability value. The multinomial

distribution is defined by two parameters: the set of values defining the prob-

abilities of realizing a specific category. and the number of trial conducted.

Similar to the binomial distribution, when the number of “trials” is one, the

multinomial distribution is equivalent to the categorical distribution, which gen-

erates a [0, 1] indicator of whether an event occurred or not. In the multinomial

(categorical) case, the “event” can take on more than 2 levels. There are no

KEY DISTRIBUTIONS IN R 10

default values for probabilities of success and the trial size, so these must be

specified.

We can start by using the multinomial distribution in R to model the phys-

ical mechanism by which we roll a single (size = 1), six sided die. The “six-

sidedness” comes from the fact we are repeating the “1/6” value six times

(using the rep() function). Here, we roll a six-sided dice 5 times:

set.seed(123)

n <- 5

y <- rmultinom(n, size = 1, p = rep(1/6, 6))

y

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 0

[2,] 0 0 0 0 0

[3,] 0 0 1 1 0

[4,] 1 0 0 0 0

[5,] 0 0 0 0 0

[6,] 0 0 0 0 1

Alternatively, we can imagine a situation where an individual can experience

one of three outcomes in a study related to cardiovascular health. Suppose

the individual can be censored (y = 1), can experience a competing event such

as death (y = 2), or can experience the outcome of interest, such as a heart

attack (y = 3). Suppose further that these probabilities are 0.1, 0.05, and 0.15,

respectively. This means that thirty percent of the sample experienced some

event, and the remaining seventy percent experienced no event (such individ-

uals would often be identified as administratively censored). We can simulate

these data with the following code:

set.seed(123)

n <- 5

KEY DISTRIBUTIONS IN R 11

y <- rmultinom(n, size = 1,

p = c(0.1,0.05,0.15, 1 - sum(0.1,0.05,0.15)))

y

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 0

[2,] 0 0 0 1 0

[3,] 0 0 0 0 0

[4,] 1 1 1 0 1

t(y)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 1

[2,] 0 0 0 1

[3,] 0 0 0 1

[4,] 0 1 0 0

[5,] 0 0 0 1

Note here that in this simulation, the first two observations experienced a

competing event, the third and the fifth observations were censored, and the

fourth observation experienced a heart attack.

1.6 Poisson Distribution

0

200

400

600

800

0 5 10 15
rpois(n = 5000, lambda = 5)

co
un

t

Figure 6: Histogram for the Poisson Distri-
bution with lamba = 5 for 5000 Simulated
Observations.

The Poisson distribution is fully defined by a single parameter, usually denoted

λ. This distribution is usually used to model counts of discrete events, such

as the number of cigarettes smoked in one hour among smokers. A Poisson

random variable can be simulated using the following code:

set.seed(123)

n <- 5

KEY DISTRIBUTIONS IN R 12

y <- rpois(n, lambda = 3)

y

[1] 2 4 2 5 6

	Distribution Functions in R

